Artigo Acesso aberto Revisado por pares

Data mining in health and medical information

2004; Wiley; Volume: 38; Issue: 1 Linguagem: Inglês

10.1002/aris.1440380108

ISSN

1550-8382

Autores

Peter A. Bath,

Tópico(s)

Biomedical Text Mining and Ontologies

Resumo

Annual Review of Information Science and TechnologyVolume 38, Issue 1 p. 331-369 Article Data mining in health and medical information Peter A. Bath, Peter A. Bath University of SheffieldSearch for more papers by this author Peter A. Bath, Peter A. Bath University of SheffieldSearch for more papers by this author First published: 22 September 2005 https://doi.org/10.1002/aris.1440380108Citations: 16Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat References Abbass, H. A. (2002). An evolutionary artificial neural networks approach for breast cancer diagnosis. Artificial Intelligence in Medicine, 25(3), 265–281. Adriaans, P., & Zantige, D. (1996). Data mining. Harlow, U.K: Addison-Wesley. Alberg, A. J., Singh, S., May, J. W., & Helzlsouer, K. J. (2000). Epidemiology, prevention, and early detection of breast cancer. Current Opinion in Oncology, 12(6), 515–520. Altman, D. G. (1991). Practical statistics for medical research. London: Chapman Hall/CRC. Altman, D. G., & Bland, M. (1994a). Statistics notes: Diagnostic tests 1: Sensitivity and specificity. British Medical Journal, 308, 1552. Altman, D. G., & Bland, M. (1994b). Statistics notes: Diagnostic tests 2: Predictive values. British Medical Journal, 309, 102. Altman, D. G., & Bland, M. (1994c). Statistics notes: Diagnostic tests 3: Receiver operating characteristic plots. British Medical Journal, 309, 188. Anand, S. S., Smith, A. E., Hamilton, P. W., Anand, J. S., Hughes, J. G., & Bartels, P. H. (1999). An evaluation of intelligent prognostic systems for colorectal cancer. Artificial Intelligence in Medicine, 15(2), 193–214. Andrews, R., Diederich, J., & Tickle, A. B. (1995). Survey and critique of techniques for extracting rules from trained artificial neural networks. Knowledge-Based Systems, 8(6), 373–389. Bath, P. A., Morgan, K., Pendleton, N., Clague, J., Horan, M., & Lucas, S. (2000). A new approach to risk determination: Prediction of new falls among community-dwelling older people using a genetic algorithm neural network (GANN). Journal of Gerontology (medical science). 55A, M17–21. Bath, P., & Philp, I., (1998). A hierarchical classification of dependency amongst older people using artificial neural networks. Health Care in Later Life, 3(1), 59–69. Baumgart-Schmitt, R., Herrmann, W. M., & Eilers, R. (1998). On the use of neural network techniques to analyze sleep ECG data. Neuropsychobiology, 37, 49–58. Baxt, W. G. (1991). Use of an artificial neural network for the diagnosis of myocardial infarction. Annals of Internal Medicine, 115, 843–848. Baxt, W. G. (1995). Application of artificial neural networks to clinical medicine. Lancet, 346, 1135–1138. Baxt, W. G., & Skora, J. (1996). Prospective validation of artificial neural networks trained to identify acute myocardial infarction. Lancet, 280(3), 229–231. Bellazzi, R., & Zupan, B. (2001). Intelligent data analysis [Special issue]. Methods of Information in Medicine, 5, 362–364. Bender, R., & Lange, S. (1999). Multiple test procedures other than Bonferroni's deserve wider use. British Medical Journal, 318, 600a–600. Benoît, G. (2002). Data mining. Annual Review of Information Science and Technology, 36, 265–310. Bertone, P., & Gerstein, M. (2001). Integrative data mining: The new direction in bioinformatics. IEEE Engineering in Medicine & Biology Magazine, 20(4), 33–40. Biganzoli, E., Boracchi, P., Mariani, L., & Marubini, E. (1998). Feed forward neural networks for the analysis of censored survival data: A partial logistic regression approach. Statistics in Medicine, 17, 1169–1186. Biganzoli, E., Boracchi, P., & Marubini, E. (2002). A general framework for neural network models on censored survival data, Neural Networks, 15(2), 209–218. Bland, M. (2000). An introduction to medical statistics ( 3rd ed.). Oxford, U.K.: Oxford Medical Publications. Bland, M. J., & Altman, D. G. (1995). Multiple significance tests: The Bonferroni method. British Medical Journal, 310, 170. Bohanec, M., Zupan, B., & Rajkovič, V. (2000). Applications of qualitative multiattribute decision models in health care. International Journal of Medical Informatics, 58–59, 191–205. Bojarczuk, C. C., Lopes, H. S., & Freitas, A. A. (2000). Genetic programming for knowledge discovery in chest-pain diagnosis. IEEE Engineering in Medicine & Biology Magazine, 19(4), 38–44. Bottaci, L., Drew, P. J., Hartley, J. E., Hadfield, M. B., Farouk, R., Lee, P. W. R., Macintyre, I. M. C., Duthie, G. S., & Monson, J. R. T. (1997). Artificial neural networks applied to outcome prediction for colorectal cancer patients in separate institutions. Lancet, 350(9076), 469–472. Brause, R. W. (2001). Medical analysis and diagnosis by neural networks. Lecture Notes in Computer Science 2199, 1–13. Cacciafesta, M., Campana, F., Piccirillo, G., Cicconetti, P., Trani, I., Leonetti-Luparini, R., Marigliani, V., & Verico, P. (2001). Neural network analysis in predicting 2-year survival in elderly people: A new mathematical-statistical approach. Archives of Gerontology and Geriatrics, 32(1), 35–44. Carmelli, D., Halpern, J., Swan, G. E., Dame, A., McElroy, M., Gelb, A. B., & Rosenman, R. H. (1991). 27-year mortality in the western collaborative group study: Construction of risk groups by recursive partitioning. Journal of Clinical Epidemiology, 44(12), 1341–1351. Chae, Y. M., Ho, S. H., Cho, K. W., Lee, D. H., & Ji, S. H. (2001). Data mining approach to policy analysis in a health insurance domain. International Journal of Medical Informatics, 62, 103–111. Coiera, E. (1997). Guide to medical informatics, the Internet and telemedicine. London: Arnold. Cox, D. R. (1972). Regression models and life tables. Journal of the Royal Statistical Society B, 4, 232–236. Cross, S. S., Harrison, R. F., & Kennedy, R. L. (1995). Introduction to neural networks. Lancet, 346, 1075–1079. Daly, L. E., & Bourke, G. J. (2000). Interpretation and uses of medical statistics ( 5th ed.). Oxford, U.K.: Blackwell Science. Dayhoff, J. E. (1990). Neural network architectures: An introduction. New York: Van Nostrand Reinhold. Downs, J., Harrison, R. F., Kennedy, R. L., & Cross, S. S. (1996). Application of the fuzzy ARTMAP neural network model to medical pattern classification tasks. Artificial Intelligence in Medicine, 8(4), 403–428. Doyle, H. R., Dvorchik, I., Mitchell, S., Marino, I. R., Ebert, F. H., McMichael, J. & Fung, J. J. (1994). Predicting outcomes after liver transplantation: A connectionist approach. Annals of Surgery, 219(4), 408–415. Dusseldorp, E., & Meulman, J. J. (2001). Prediction in medicine by integrating regression trees into regression analysis with optimal scaling. Methods of Information in Medicine, 40, 403–409. Dybowski, R., & Gant, V. (1995). Artificial neural networks in pathology and medical laboratories. Lancet, 346, 1203–1207. Ennis, M., Hinton, G., Naylor, D., Revow, M., & Tibshirani, R. (1998). A comparison of statistical learning methods on the GUSTO database. Statistics in Medicine, 17, 2501–2508. Faraggi, D., & Simon, R. (1995). A neural network model for survival data. Statistics in Medicine, 14, 73–82. Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). The KDD process for extracting useful knowledge from volumes of data. Communications of the ACM, 39(11), 27–34. Floyd, C. E., Lo, J. Y., Yun, A. J., Sullivan, D. C., & Kornguth, P. J. (1994). Prediction of breast cancer malignancy using an artificial neural network. Cancer, 74(11), 2944–2948. Fogel, D. B., Wasson, E. C., & Boughton, E. M. (1995). Evolving neural networks for detecting breast cancer. Cancer Letters, 96(1), 49–53. Fogel, D. B., Wasson, E. C., Boughton, E. M., & Porto, V. W. (1997). A step toward computer-assisted mammography using evolutionary programming and neural networks. Cancer Letters, 119(1), 93–97. Friedman, G. D. (1994). Primer of epidemiology ( 4th ed.). New York: McGraw-Hill. Giuliani, A., & Benigni, R. (2000). Principal components analysis for descriptive epidemiology. Lecture Notes in Artificial Intelligence, 1933, 308–313. Goldberg, D. E. (1989). Genetic algorithms in search, optimization and machine learning. New York: Addison-Wesley. Gray, H. F., Maxwell, R. J., Martinez-Perez, I., Arus, C., & Cerdan, S. (1998). Genetic programming for classification and feature selection: Analysis of 1H nuclear magnetic resonance spectra from human brain tumour biopsies. NMR in Biomedicine, 11(4–5), 217–224. Grigsby, J., Kooken, R., & Hershberger, J. (1994). Simulated neural networks to predict outcomes, costs, and length of stay among orthopedic rehabilitation patients. Archives of Physical and Medical Rehabilitation, 75, 1077–1081. Handels, H., Rob, T., Kruesch, J., Wolff, H. H., & Pöppl, S. J. (1999). Feature selection for optimized skin tumor recognition using genetic algorithms. Artificial Intelligence in Medicine, 16, 283–289. Haykin, S. S. (1999). Neural networks: A comprehensive foundation ( 2nd ed.). Upper Saddle River, NJ.: Prentice Hall International. Holmes, J. H., Durbin, D. R., & Winston, F. K. (2000). The learning classifier system: An evolutionary computation approach to knowledge discovery in epidemiologic surveillance. Artificial Intelligence in Medicine, 19, 53–74. Horn, W. (2001). AI in medicine on its way from knowledge-intensive systems to data-intensive systems. Artificial Intelligence in Medicine, 23, 5–12. Isken, M. W., & Rajagopalan, B. (2002). Data mining to support simulation modelling of patient flow in hospitals. Journal of Medical Systems, 26(2), 179–197. Jefferson, M. (2001). Outcome prediction in medicine with genetic algorithm neural networks. Unpublished doctoral dissertation, University of Manchester. Jefferson, M. F., Pendleton, N., Lucas, S. B., & Horan, M. A. (1995). Neural networks. Lancet, 346, 1712. Jefferson, M. F., Pendleton, N., Lucas, S. B., & Horan, M. A. (1997). Comparison of a genetic algorithm neural network with logistic regression for predicting outcome after surgery for patients with nonsmall cell lung carcinoma. Cancer, 79(7), 1338–1342. Jefferson, M. F., Pendleton, N., Lucas, C. P., Lucas, S. B., & Horan, M. A. (1998a). Evolution of artificial neural network architecture: Prediction of depression after mania. Methods of Information in Medicine, 37, 220–225. Jefferson, M. F., Pendleton, N., Mohamed, S., Kirkman, E., Little, R. A., Lucas, S. B., & Horan, M. A. (1998b). Prediction of hemorrhagic blood loss with a genetic algorithm neural network. Journal of Applied Physiology, 84, 357–361. Johnston, M. E., Langton, K. B., Hayes, R. B., & Mathieu, A. (1994). Effects of computer-based clinical decision support systems on clinician performance and patient outcome: A critical appraisal of research. Annals of Internal Medicine, 120, 135–142. Jones, J. K. (2001). The role of data mining technology in the identification of signals of possible adverse drug reactions: Values and limitations. Current Therapeutic Research, 62(9), 664–673. Koh, H. C., & Leong, S. K. (2001). Data mining applications in the context of case mix. Annals of the Academy of Medicine, 30(4), 41–49. Kohonen, T. (1995). Self-organizing maps. Berlin: Springer Verlag. Kononenko, I., Bratko, I., & Kukar, M. (1998). Application of machine learning in medical diagnosis. In R. S. Michalsko, I. Bratko & M. Kubat (Eds.). Machine learning and data mining: Methods and applications (pp. 389–408). New York: John Wiley. Koza, J. R. (1990a). Genetic programming: A paradigm for genetically breeding populations of computer programs to solve problems (STAN-CS-90-1314). Stanford. CA: Stanford University Computer Science Department. Koza, J. R. (1990b). Genetically breeding populations of computer programs to solve problems in artificial intelligence. Proceedings of the Second International Conference on Tools for AI, 819–827. Kuo, W. J., Chang, R. F., Chen, D. R., & Lee, C. C. (2001). Data mining with decision trees for diagnosis of breast tumour in medical ultrasonic images. Breast Cancer Research and Treatment, 66, 51–57. Last, M., Schenker, A., & Kandel, A. (1999). Applying fuzzy hypothesis testing to medical data. In N. Zhong, A. Skowron & S. Ohsuga (Eds.), New directions in rough sets, data mining, and granular-soft computing (pp. 221–229). Berlin: Springer. Lavrač, N. (1999a). Selected techniques for data mining in medicine. Artificial Intelligence in Medicine, 16, 3–23. Lavrač, N. (1999b). Machine learning for data mining in medicine. Lecture Notes in Artificial Intelligence, 1620, 47–62. Lee, I. N., Liao, S. C., & Embrechts, M. (2000). Data mining techniques applied to medical information. Medical Informatics, 25(2), 81–102. Liebowitz, J. (2001a). Knowledge management and its link to artificial intelligence. Expert Systems with Applications, 20, 1–6. Liebowitz, J. (2001b). If you are a dog lover, build expert systems; if you are a cat lover, build neural networks. Expert Systems with Applications, 21, 63. Liestol, K., Andersen, P. K., & Andersen, U. (1994). Survival analysis and neural nets. Statistics in Medicine, 13, 1189–1200. Lin, F., Chou, S., Pan, S., & Chen, Y. (2001). Mining time dependency patterns in clinical pathways. International Journal of Medical Informatics, 62, 11–25. Lipmann, R. P. (1987). An introduction to computing with neural nets. IEEE ASSP Magazine, 4, 4–22. Lisboa, P. J. G. (2002). A review of evidence of health benefit from artificial neural networks in medical intervention. Neural Networks, 15(1), 11–39. Luscombe, N. M., Greenbaum, D., Gerstein, M. (2001). What is bioinformatics? A proposed definition and overview of the field. Methods of Information in Medicine, 40(4), 346–358. MacNamee, B., Cunningham, P., Byrne, S., & Corrigan, O. I. (2002). The problem of bias in training data in regression problems in medical decision support. Artificial Intelligence in Medicine, 24, 51–70. Maojo, V., Martin, F., Crespo, J., & Billhardt, H. (2002). Theory, abstraction and design in medical informatics. Methods of Information in Medicine, 41, 44–50. Maojo, V., & Sanandrés, J. (2000). A survey of data mining techniques. Lecture Notes in Artificial Intelligence, 1933, 17–21. McSherry, D. (1999). Dynamic and static approaches to clinical data mining. Artificial Intelligence in Medicine, 16, 97–115. Michalski, R. S., Bratko, I., & Kubat, M. (1997). Machine learning and data mining: Methods and applications. New York: John Wiley. Miller, P. L. (2000). Opportunities at the intersection of bioinformatics and health informatics: A case study. Journal of the American Medical Informatics Association, 7(5), 431–438. Mills, J. L. (1993). Data torturing. New England Journal of Medicine, 329, 1196–1199. Naranyan, M. N., & Lucas, S. B. (1993). A genetic algorithm to improve a neural network performance to predict a patient's response to Warfarin. Methods of Information in Medicine, 32, 55–58. Ngan, P. S., Wong, M. L., Lam, W., Leung, K. S., & Cheng, J. C. Y. (1999). Medical data mining using evolutionary computation. Artificial Intelligence in Medicine, 16(1), 73–96. Ottenbacher, K. J., Smith, P. M., Illig, S. B., Linn, T., Fiedler, R. C., & Granger, C. V. (2001). Comparison of logistic regression and neural networks to predict rehospitalization in patients with stroke. Journal of Clinical Epidemiology, 54, 1159–1165. Papaloukas, C., Fotiadis, D. I., Likas, A., & Michalis, L. K. (2002). An ischemia detection method based on neural networks. Artificial Intelligence in Medicine, 24, 167–178. Peña-Reyes, C. A., & Sipper, M. (1999). A fuzzy-genetic approach to breast cancer diagnosis. Artificial Intelligence in Medicine, 17, 131–155. Peña-Reyes, C. A., & Sipper, M. (2000). Evolutionary computation in medicine: An overview. Artificial Intelligence in Medicine, 19, 1–23. Pendharkar, P. C., Rodger, J. A., Yaverbaum, G. J., Herman, N., & Benner, M. (1999). Association, statistical, mathematical and neural approaches for mining breast cancer patterns. Expert Systems with Applications, 17, 223–232. Perneger, T. V. (1998). What's wrong with Bonferroni adjustments. British Medical Journal, 316, 1236–1238. Peters, T. K., Koralewski, H. E., & Zerbst, E. W. (1989). The evolution strategy: A search strategy used in the individual optimisation of electrical parameters for therapeutic carotid sinus nerve stimulation. IEEE Transactions on Biomedical Engineering, 36(7), 668–675. Richards, G., Rayward-Smith, V. J., Sönksen, P. H., Carey, S., & Weng, C. (2001). Data mining for indicators of early mortality in a database of clinical records. Artificial Intelligence in Medicine, 22, 215–231. Sarle, W. S. (2002). How are NNs related to statistical methods? Retrieved November 28, 2002, from http://www.faqs.org/faqs/ai-faq/neural-nets/part1/section-15.html Schwarzer, G., Vach, W., & Schumacher, M. (2000). On the misuses of artificial neural network for prognostic and diagnostic classification in oncology. Statistics in Medicine, 19, 451–561. Setiono, R. (1996). Extracting rules from pruned neural networks for breast cancer diagnosis. Artificial Intelligence in Medicine, 8, 37–51. Setiono, R. (2000). Generating concise and accurate classification rules for breast cancer diagnosis. Artificial Intelligence in Medicine, 18, 205–219. Shortliffe, E. H., & Barnett, G. O. (2001). Medical data: Their acquisition, storage and use. In E. H. Shortliffe & L. E. Perreault (Eds.), Medical informatics computer applications in health care and biomedicine ( 2nd ed.) (pp. 41–75). New York: Springer. Shortliffe, E. H., & Blois, M. S. (2001). The computer meets biology and medicine: Emergence of a discipline. In E. H. Shortliffe & L. E. Perreault (Eds.), Medical informatics computer applications in health care and biomedicine ( 2nd ed.) (pp. 3–40). New York: Springer. Sierra, B., & Larrañaga, P. (1998). Predicting survival in malignant skin melanoma using Bayesian networks automatically induced by genetic algorithms: An empirical comparison between different approaches. Artificial Intelligence in Medicine, 14, 215–230. Smith, A., & Nelson, M. (1999). Data warehouses and clinical data warehouses. In M. J. Ball, J. V. Douglas, & D. E. Garets (Eds.), Strategies and technologies for healthcare information (pp. 17–31). New York: Springer. Sullivan, F., & Mitchell, E. (1995). Has general practitioner computing made a difference to patient care? A systematic review of published reports. British Medical Journal, 311, 848–852. Swanson, D. R. (1987). Two medical literatures that are logically but not bibliographically connected. Journal of the American Society for Information Science, 38, 228–233. Swanson, D. R. & Smalheiser, N. R. (1999). Implicit text linkages between Medline records: Using Arrowsmith as an aid to scientific discovery. Library Trends, 48, 48–59. Trybula, W. J. (1997). Data mining and knowledge discovery. Annual Review of Information Science and Technology, 32, 197–229. Trybula, W. J. (1999). Text mining. Annual Review of Information Science and Technology, 34, 385–420. Tu, J. V. (1996). Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes. Journal of Clinical Epidemiology, 49(11), 1225–1231. Van Rijsbergen, C. J. (1979). Information retrieval ( 2nd ed.). London: Butterworths. Retrieved November 28, 2002, from http://www.dcs.gla.ac.uk/Keith/Preface.html Walker, A. J., Cross, S. S., & Harrison, R. F. (1999). Visualisation of biomedical datasets by use of growing cell structure networks: A novel diagnostic classification technique. Lancet, 354, 1518–1521. Wong, M. L., Leung, K. S., & Cheng, J. C. Y. (2000). Discovering knowledge from noisy databases using genetic programming. Journal of the American Society for Information Science, 51, 870–881. Wu, Y., Giger, M. L., Doi, K., Vyborny, C. J., Schmidt, R. A., & Metz, C. E. (1993). Artificial neural networks in mammography: Application to decision making in the diagnosis of breast cancer. Radiology, 187(1), 81–87. Wyatt, J. C., & Altman, D. G. (1995). Commentary: Prognostic models; clinically useful or quickly forgotten? British Medical Journal, 311, 1539–1541. Xiang, A., Lapuertab, P., Ryutova, A., Buckleya, J., & Azena, S. (2000). Comparison of the performance of neural network methods and Cox regression for censored survival data. Computational Statistics & Data Analysis, 34(2), 243–257. Zhong, N., & Dong, J. (2002). Mining interesting rules in meningitis data by cooperatively using GDT-RS and RSBR. Lecture Notes in Artificial Intelligence, 2336, 405–416. Zupan, B., Demš, J., Kattan, M. W., Beck, J. R., & Bratko, I. (1999). Machine learning for survival analysis: A case study on recurrence of prostate cancer. Lecture Notes in Artificial Intelligence, 1620, 346–355. Citing Literature Volume38, Issue12004Pages 331-369 ReferencesRelatedInformation

Referência(s)