Artigo Acesso aberto Revisado por pares

Updating correction procedures in quantitative electron‐probe microanalysis

1981; Wiley; Volume: 4; Issue: 3 Linguagem: Inglês

10.1002/sca.4950040302

ISSN

1932-8745

Autores

G. Love, V. D. Scott,

Tópico(s)

Surface and Thin Film Phenomena

Resumo

ScanningVolume 4, Issue 3 p. 111-130 Original PaperFree to Read Updating correction procedures in quantitative electron-probe microanalysis G. Love, G. Love School of Materials Science, University of Bath, Bath BA2 7AY, UKSearch for more papers by this authorV. D. Scott, V. D. Scott School of Materials Science, University of Bath, Bath BA2 7AY, UKSearch for more papers by this author G. Love, G. Love School of Materials Science, University of Bath, Bath BA2 7AY, UKSearch for more papers by this authorV. D. Scott, V. D. Scott School of Materials Science, University of Bath, Bath BA2 7AY, UKSearch for more papers by this author First published: 1981 https://doi.org/10.1002/sca.4950040302Citations: 29AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat References Andersen C A, Wittry D B: An evaluation of absorption correction functions for electron probe microanalysis. J Phys D: Appl Phys 1, 529–40 (1968) 10.1088/0022-3727/1/5/301 Web of Science®Google Scholar Archard G D, Mulvey T: The Effect of Atomic Number in X-ray Microanalysis. X-ray Optics and X-ray Microanalysis (Eds. H H Pattee, V E Cosslett, A Engström) Academic Press, New York 1963, pp 393–410 10.1016/B978-1-4832-3322-2.50040-8 Google Scholar Beaman D A, Isasi J A: A critical examination of computer programs used in quantitative electron microprobe analysis. Anal Chem 42, 1540–1568 (1970) 10.1021/ac60295a021 CASWeb of Science®Google Scholar Bence A E, Albee A L: Empirical correction factors for the electron microanalysis of silicates and oxides. J Geol 76, 382–403 (1968) 10.1086/627339 CASWeb of Science®Google Scholar Bethe H A: Theory of passage of swift corpuscular rays through matter. Ann Phys Leipz 5, 325–400 (1930) 10.1002/andp.19303970303 CASWeb of Science®Google Scholar Bethe H A, Ashkin J: Experimental Nuclear Physics. John Wiley, New York (1953) Google Scholar Bishop H E: Some Electron Backscattering Measurements for Solid Targets. X-ray Optics and Microanalysis (Eds R Castaing, P Deschamps, J Philibert), Hermann, Paris 1966a. pp 153–158 Web of Science®Google Scholar Bishop H E: Electron Scattering and X-ray Production. PhD Thesis University of Cambridge 1966b) Google Scholar Bishop H E: Electron scattering in thick targets. Br J Appl Phys 18, 703–715 (1967) 10.1088/0508-3443/18/6/302 CASWeb of Science®Google Scholar Bishop H E: The prospects for an improved absorption correction in electron probe microanalysis. J Phys D: Appl Phys 7, 2009–2020 (1974) 10.1088/0022-3727/7/14/320 CASWeb of Science®Google Scholar Bloch F: Bremsvermögen von Atomen mit mehreren Elektronen. Z Phys 81, 363–376 (1933) 10.1007/BF01344553 CASGoogle Scholar Borovskii I B: X-ray Spectral Chemical Microanalysis at Separate Points in a Polished Section. Problemy Metallurgii Moscow: Izdatel, Akademicia Nauk SSSR 135–139 (1953) Google Scholar Bothe W: Die Streuabsorption der Elektronenstrahlen. Z Phys 54, 161–178 (1929) 10.1007/BF01339835 CASGoogle Scholar Brown J D, Robinson W H: Quantitative analysis by σ (ϱz) curves. Microbeam Analysis 1979 (Ed D E Newbury) San Francisco Press, San Francisco 1979, pp 238–240 Web of Science®Google Scholar Burhop E H S, Asaad, W N: Auger effect. Adv Atom Molec Phys 8. 163–284 (1972) 10.1016/S0065-2199(08)60021-4 CASGoogle Scholar Castaing R: Application of Electron Probes to Local Chemical and Crystallographic Analysis. Thesis Univ of Paris also ONERA No 55 (1951) Google Scholar Castaing R: Electron Probe Microanalysis. Adv Electron Phys 13 (Eds L L Marton and C Marton), Academic Press, New York 1960, pp 317–386 Google Scholar Castaing R, Descamps J: On the physical basis of point analysis by x-ray spectrography. J de Physique et le Radium 16, 304–317 (1955) 10.1051/jphysrad:01955001604030400 CASWeb of Science®Google Scholar Castaing R I, Guinier A: Sur l'exploration et l'analyse élementaire d'un échantillon par une sonde électronique. Proc Conf on Electron Microscopy Delft 1949 (Ed A L Houwink), Martinus, Nijhoff 1950, pp 60–63 Google Scholar Cosslett V E, Duncumb P: Microanalysis by a flying-spot x-ray method. Nature 177, 1172–1173 (1956) 10.1038/1771172b0 PubMedWeb of Science®Google Scholar Cosslett V E, Thomas R N: Multiple scattering of 5–30 keV electrons in evaporated metal films: I Total transmission and angular distribution. Br J Appl Phys 15, 883–907 (1964) 10.1088/0508-3443/15/8/303 CASWeb of Science®Google Scholar Criss J: On the structure of formulas for quantitative analysis. NBS Spec Publ 298 (Ed K F J Heinrich), US Dept of Commerce Washington, 53–62 (1968) Google Scholar Darlington E H, Cosslett V E: Backscattering of 0.5–10 keV electrons from solid targets. J Phys D: Appl Phys 5, 1969–1981 (1972) Google Scholar Duncumb P: Microanalysis with an X-ray Scanning Microscope. Ph D Thesis, Univ of Camb (1957) Google Scholar Duncumb P, cited in Heinrich K F J: Theorie der Elektronenstrahl-Mikroanalyse. Mikrochim Acta Suppl IV. 252–262 (1970) Google Scholar Duncumb P, Melford D A: Quantitative applications of ultra-soft x-ray microanalysis n. X-ray Optics and Microanalysis. (Eds R Castaing, P Deschamps, J Philibert) Hermann. Paris 1966, pp 240–254 Google Scholar Duncumb P, Reed S J B: The calculation of stopping power and backscatter effects in electron probe microanalysis. NBS Spec Publ 298. (Ed K F J Heinrich) US Dept of Commerce 1968. pp 133–154 Google Scholar Duncumb P, Shields-Mason P K, Da Casa C: Accuracy of atomic number and absorption corrections in electron probe microanalysis. X-ray Optics and Microanalysis. (Eds G Möllenstedt, K H Gaukler) Springer Verlag, Berlin 1969. pp 146–150 Google Scholar Green M: The target absorption correction in x-ray microanalysis. X-ray Optics and X-ray Microanalysis. (Eds H H Pattee, V E Cosslett, A Engström) Academic Press, New York 1963, pp 361–378 10.1016/B978-1-4832-3322-2.50038-X Web of Science®Google Scholar Green M, Cosslett V E: The efficiency of production of characteristic x-radiation in thick targets of a pure element. Proc Phys Soc 78, 1206–1214 (1961) 10.1088/0370-1328/78/6/315 CASWeb of Science®Google Scholar Heinrich K F J: X-ray absorption uncertainty. The Electron Microprobe. (Ed T D McKinley K F J Heinrich, D B Wittry) Wiley, New York 1966, pp 296–377 Google Scholar Heinrich K F J: The absorption correction model for microprobe analysis. Trans 2nd Nat Conf on Electron Probe Microanalysis, Electron Probe Analysis Soc of Amer, Boston. Paper No. 7 (1967) Google Scholar Heinrich K F J, Yakowitz H: Quantitative electron probe microanalysis: Fluorescence correction uncertainty. Mikrochim Acta 5, 905–916 (1968) 10.1007/BF01221155 Google Scholar Heinrich K F J, Yakowitz H, Vieth D L: The correction for absorption of primary x-rays. Proc 7th Nat Conf on Electron Probe Microanaylsis, San Francisco, Paper No. 3 A (1972) Google Scholar Henoc J: Fluorescence Excited by the Continuum. NBS Spec Publ 298 (Ed K F J Heinrich) US Dept of Commerce, Washington, 197–214 (1968) Google Scholar Kirianenko A, Maurice F, Calais D, Adda Y: Analysis of heavy elements (Z > 80) with the Castaing microprobe: Applications to the analysis of binary systems containing uranium. X-ray Optics and X-ray Microanalysis. (Eds H H Pattee, V E Cosslett, A Engström) Academic Press, New York 1963, pp 559–576 10.1016/B978-1-4832-3322-2.50055-X Google Scholar Kramers H A: Theory of x-ray absorption and of the continuous x-ray spectrum. Phil Mag 46, 836–71 (1923) 10.1080/14786442308565244 CASWeb of Science®Google Scholar Love G, Scott V D: Evaluation of a new correction procedure for quantitative electron probe microanalysis. J Phys D: Appl Phys 11, 1369–1376 (1978) 10.1088/0022-3727/11/10/002 CASWeb of Science®Google Scholar Love G, Scott D: A critical appraisal of some recent correction procedures for quantitative electron probe microanalysis. J Phys D: Appl Phys 13, 995–1004 (1980) 10.1088/0022-3727/13/6/010 CASWeb of Science®Google Scholar Love G, Cox M G C, Scott V D: Electron probe microanalysis using oxygen x-rays: I Mass absorption coefficients. J Phys D: Appl. Phys I, 2131–2141 (1974a) 10.1088/0022-3727/7/15/318 Web of Science®Google Scholar Love G, Cox M G C, Scott V D: Assessment of Philibert's absorption correction models in electron probe microanalysis. J Phys D: Appl Phys 8, 1686–1702 (1975) 10.1088/0022-3727/8/14/012 CASWeb of Science®Google Scholar Love G, Cox M G C, Scott V D: Assessment of Bishop's absorption correction model in electron probe microanalysis. J Phys D: Appl Phys 9, 7–13 (1976) 10.1088/0022-3727/9/1/007 Web of Science®Google Scholar Love G, Cox M G C, Scott V D: A simple Monte Carlo method for simulating electron solid interactions and its application to electron probe microanalysis. J Phys D: Appl Phys 10, 7–23 (1977) 10.1088/0022-3727/10/1/002 CASWeb of Science®Google Scholar Love G, Cox M G C, Scott V D: A versatile atomic number correction for electron probe microanalysis. J Phys D: Appl Phys 11, 7–22 (1978) 10.1088/0022-3727/11/1/004 CASWeb of Science®Google Scholar McMullan D: Improved scanning electron microscope for opaque specimens. Proc Instn Elect Engrs 100 (II), 245–259 (1953) Google Scholar Martin P M, Poole D M: Electron-probe microanalysis. The relation between intensity ratio and concentration. Metallurgical Rev 16, 19–47 (1971) Google Scholar Maurice F: X-ray Emission. Microanalysis and Scanning Electron Microscopy. (Eds F Maurice, L Meny, R Tixier) Les Editions de Physique, Orsay 1979, pp 169–211 Google Scholar Parobek L, Brown J D: The atomic number and absorption correction in electron probe microanalysis at low electron energies. X-ray Spectrometry 7, 26–30 (1978) 10.1002/xrs.1300070109 CASWeb of Science®Google Scholar Philibert J: A method for calculating the absorption correction in electron probe microanalysis. X-ray Optics and X-ray Microanalysis. (Eds H H Pattee, V E Cosslett, A Engstrom) Academic Press, New York 379–392 (1963) 10.1016/B978-1-4832-3322-2.50039-1 Google Scholar Philibert J: Etat actuel des methodes quantitatives d'analyse par sonde electronique. X-ray Optics and Microanalysis. (Eds G Möllenstedt, K H Gaukler, Springer Verlag, Berlin 1969, pp 114–131 Google Scholar Philibert J, Tixier R: Some problems with quantitative electron probe microanalysis. NBS Spec Publ 298. (Ed K F J Heinrich) US Dept of Commerce, Washington 1968, pp 13–34 Google Scholar Poole D M, Thomas P M: Quantitative electron-probe microanalysis. J Inst Metals 90, 228–233 (1961–1962) Web of Science®Google Scholar Rao-Sahib T S, Wittry D B: X-ray continuum from thick elemental targets for 10–50 keV electrons. J Appl Phys 45, 5060–5068 (1974) 10.1063/1.1663184 CASWeb of Science®Google Scholar Reed S J B: Characteristic fluorescence corrections in electron probe microanalysis. Br J Appl Phys 16, 913–926 (1965) 10.1088/0508-3443/16/7/301 CASWeb of Science®Google Scholar Reed S J B: The backscattering correction for quantitative electron probe microanalysis with electrons incident at 45°. J Phys D: Appl Phys 4, 1910–1912 Google Scholar Reed S J B: Electron Microprobe Analysis. Cambridge Univ Press, Cambridge (1975) Google Scholar Ruste J, Zeller C: Correction d'absorption en micro-analyse. C R Acad Sc Paris t 284, Serie B, 507–510 (1977) CASWeb of Science®Google Scholar Scott V D, Ranzetta G V T: Electron probe microanalysis of radioactive samples. Quantitative analysis of the plutonium-iron system. J Inst of Metals 90, 160–167 (1961–1962) Web of Science®Google Scholar Springer G: The Correction for „Continuous Fluorescence in Electronprobe Microanalysis.”︁ Neues Jahrb Mineral Abhandl 106, 241–256 (1967) CASGoogle Scholar Springer G: Fluorescence by continuous radiation in multi-element targets. X-ray Optics and Microanalysis. (Eds G Shinoda, K Kohra, T Ichinokawa) Tokyo Univ Press, Tokyo 1972, pp 141–146 Google Scholar Springer G, Nolan B: Mathematical expression for the evaluation of x-ray emission and critical energies, and of mass absorption coefficients. Canad J of Spectrosc 21, 134–138 (1976) CASWeb of Science®Google Scholar Springer G, Rosner B: The Magnitude of the Continuous Fluorescence Correction in Electronprobe Analysis. X-ray Optics and Microanalysis (Eds G Möllenstedt, K H Gaukler) Springer Verlag, Berlin 1969, pp 170–174 Google Scholar Thomas P M: Outline of a method for correcting for atomic number effects in electron probe microanalysis. Br J Appl Phys 14, 397–398 (1963) 10.1088/0508-3443/14/6/129 CASWeb of Science®Google Scholar Wentzel G: Quantum jumps without radiation. Z Phys 43, 524–530 (1927) 10.1007/BF01397631 CASGoogle Scholar Whiddington R: The transmission of cathode rays through matter. Proc Roy Soc A 86, 360–370 (1912) 10.1098/rspa.1912.0028 Google Scholar Yakowitz H, Heinrich K F J: Quantitative electron probe microanalysis: Absorption correction uncertainty. Mikrochim Acta, 182–200 (1968) Google Scholar Ziebold T O, Ogilvie R E: An empirical method for electron microanalysis. Anal Chem 36, 322–7 (1964) 10.1021/ac60208a024 CASWeb of Science®Google Scholar Citing Literature Volume4, Issue31981Pages 111-130 ReferencesRelatedInformation

Referência(s)
Altmetric
PlumX