Artigo Revisado por pares

Nanostructured palladium–La0.75Sr0.25Cr0.5Mn0.5O3/Y2O3–ZrO2 composite anodes for direct methane and ethanol solid oxide fuel cells

2008; Elsevier BV; Volume: 185; Issue: 1 Linguagem: Inglês

10.1016/j.jpowsour.2008.06.099

ISSN

1873-2755

Autores

San Ping Jiang, Yinmei Ye, Tianmin He, See Boon Ho,

Tópico(s)

Catalysis and Oxidation Reactions

Resumo

A palladium-impregnated La0.75Sr0.25Cr0.5Mn0.5O3−δ/yttria-stabilized zirconia (LSCM/YSZ) composite anode is investigated for the direct utilization of methane and ethanol fuels in solid oxide fuel cells (SOFCs). Impregnation of Pd nanoparticles significantly enhances the electrocatalytic activity of LSCM/YSZ composite anodes for the methane and ethanol electrooxidation reaction. At 800 °C, the maximum power density is increased by two and eight times with methane and ethanol fuels, respectively, for a cell with the Pd-impregnated LSCM/YSZ composite anode, as compared with that using a pure LSCM/YSZ anode. No carbon deposition is observed during the reaction of methane and ethanol fuels on the Pd-impregnated LSCM/YSZ composite anode. The results show the promises of nanostructured Pd-impregnated LSCM/YSZ composites as effective anodes for direct methane and ethanol SOFCs.

Referência(s)
Altmetric
PlumX