On Connection Coefficients for q -Difference Systems of A -Type Jackson Integrals
1994; Society for Industrial and Applied Mathematics; Volume: 25; Issue: 2 Linguagem: Inglês
10.1137/s0036141092227460
ISSN1095-7154
Autores Tópico(s)Advanced Topics in Algebra
ResumoPrevious article Next article On Connection Coefficients for q-Difference Systems of A-Type Jackson IntegralsKazuhiko AomotoKazuhiko Aomotohttps://doi.org/10.1137/S0036141092227460PDFBibTexSections ToolsAdd to favoritesExport CitationTrack CitationsEmail SectionsAboutAbstractGeneral Jackson integrals are formulated. Two different kinds of special Jackson integrals are defined. The explicit relation formulae among them are obtained by the use of theta rational functions.[1] George E. Andrews, q-series: their development and application in analysis, number theory, combinatorics, physics, and computer algebra, CBMS Regional Conference Series in Mathematics, Vol. 66, Published for the Conference Board of the Mathematical Sciences, Washington, DC, 1986xii+130 88b:11063 0594.33001 Google Scholar[2] Kazuhiko Aomoto, Finiteness of a cohomology associated with certain Jackson integrals, Tohoku Math. J. (2), 43 (1991), 75–101 92c:33035 0769.33016 CrossrefISIGoogle Scholar[3] Kazuhiko Aomoto and , Yoshifumi Kato, M. Kashiwara and , T. Miwa, A q-analogue of de Rham cohomology associated with Jackson integralsSpecial functions (Okayama, 1990), ICM-90 Satell. Conf. Proc., Springer, Tokyo, 1991, 30–62, Proc. of the Hayashibara Forum 94f:14017 0768.33019 Google Scholar[4] Kazuhiko Aomoto, , Yoshifumi Kato and , Katsuhisa Mimachi, A solution of the Yang-Baxter equation as connection coefficients of a holonomic q-difference system, Internat. Math. Res. Notices, (1992), 7–15 10.1155/S1073792892000023 93d:39007 0765.39002 CrossrefGoogle Scholar[5] Kazuhiko Aomoto, , Yoshifumi Kato and , Katsuhisa Mimachi, Gauss matric decomposition and a solution of Yang-Baxter equation, 1991, preprint, J. Math. Anal., to appear Google Scholar[6] Richard Askey, Some basic hypergeometric extensions of integrals of Selberg and Andrews, SIAM J. Math. Anal., 11 (1980), 938–951 10.1137/0511084 82e:33002 0458.33002 LinkISIGoogle Scholar[7] Richard Askey, G. E. Andrews, Beta integrals in Ramanujan's papers, his unpublished work and further examplesRamanujan revisited (Urbana-Champaign, Ill., 1987), Academic Press, Boston, MA, 1988, 561–590 89i:01044 0648.33001 Google Scholar[8] Richard Askey, Beta integrals and q-extensions, Proceedings of the Ramanujan Centennial International Conference (Annamalainagar, 1987), RMS Publ., Vol. 1, Ramanujan Math. Soc., Annamalainagar, 1988, 85–102 90e:33004 0697.33002 Google Scholar[9] I. B. Frenkel and , N. Yu. Reshetikhin, S. Catto and , A. Rocha, Quantum affine algebras and holonomic difference equationsDifferential Geometric Methods in Theoretical Physics, World Scientific, New York, 1992 CrossrefGoogle Scholar[10] George Gasper and , Mizan Rahman, Basic hypergeometric series, Encyclopedia of Mathematics and its Applications, Vol. 35, Cambridge University Press, Cambridge, 1990xx+287 91d:33034 0695.33001 Google Scholar[11] Phillip Griffiths and , Joseph Harris, Principles of algebraic geometry, Wiley-Interscience [John Wiley & Sons], New York, 1978xii+813 80b:14001 Google Scholar[12] Robert A. Gustafson, A generalization of Selberg's beta integral, Bull. Amer. Math. Soc. (N.S.), 22 (1990), 97–105 90j:33001 0693.33001 CrossrefISIGoogle Scholar[13] Harris Hancock, Lectures on the theory of elliptic functions: Analysis, Dover Publications Inc., New York, 1958xxiv+498 20:6540 0084.07302 Google Scholar[14] Frank Harary, Graph theory, Addison-Wesley Publishing Co., Reading, Mass.-Menlo Park, Calif.-London , 1969ix+274 41:1566 0182.57702 CrossrefGoogle Scholar[15] J. Kaneko, M. Yosida and , M. Namba, Selberg integrals and hypergeometric functions, Special Differential Equations, Proc. of the Taniguchi Workshop, 1991 Google Scholar[16] K. Kadell, A proof of Askey's conjectured q-analogue of Selberg's integral and a conjecture of Morris, SIAM J. Math. Anal., 19 (1988), 969–986 10.1137/0519067 89h:33006b 0643.33004 LinkISIGoogle Scholar[17] Katsuhisa Mimachi, A proof of Ramanujan's identity by use of loop integrals, SIAM J. Math. Anal., 19 (1988), 1490–1493 10.1137/0519112 89i:33020 0665.33002 LinkISIGoogle Scholar[18] Katsuhisa Mimachi, Connection problem in holonomic q-difference system associated with a Jackson integral of Jordan-Pochhammer type, Nagoya Math. J., 116 (1989), 149–161 91b:33023 0688.39002 CrossrefISIGoogle Scholar[19] J. W. Moon, F. Harary, Various proofs of Cayley's formula for counting treesA seminar on Graph Theory, Holt, Rinehart and Winston, New York, 1967, 70–78 35:5365 Google Scholar[20] Tadao Oda, Convex bodies and algebraic geometry, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], Vol. 15, Springer-Verlag, Berlin, 1988viii+212, an introduction to the theory of tonic varieties 88m:14038 0628.52002 Google Scholar[21] Claude Sabbah, Systèmes holonomes d'équations aux q-différencesD-modules and microlocal geometry (Lisbon, 1990), de Gruyter, Berlin, 1993, 125–147 94g:33018 0794.33012 CrossrefGoogle Scholar[22] A. Varchenko, Quantized Knizhnik-Zamolodchikov equations, Quantum Yang-Baxter equation, and difference erence equations for q-hypergeometr is functions, 1993, preprint Google ScholarKeywordsconnection coefficientq-difference equationJackson integral Previous article Next article FiguresRelatedReferencesCited ByDetails The q-Dixon–Anderson integral and multi-dimensional ψ11 summationsJournal of Mathematical Analysis and Applications, Vol. 423, No. 2 | 1 Mar 2015 Cross Ref Multivariable q-Racah polynomialsDuke Mathematical Journal, Vol. 91, No. 1 | 15 Jan 1998 Cross Ref Общие гамма-функции, экспоненты и гипергеометрические функцииУспехи математических наук, Vol. 53, No. 1 | 1 Jan 1998 Cross Ref On a Theta Product Formula for Jackson Integrals Associated with Root Systems of Rank TwoJournal of Mathematical Analysis and Applications, Vol. 216, No. 1 | 1 Dec 1997 Cross Ref Gauss decomposition of connection matrices for symmetricA-type Jackson integralsSelecta Mathematica, Vol. 1, No. 4 | 1 Mar 1995 Cross Ref Connection formulas in the q-analog de Rham cohomologyFunctional Analysis on the Eve of the 21st Century | 1 Jan 1995 Cross Ref Connection formulas in the q-analog de Rham cohomologyFunctional Analysis on the Eve of the 21st Century | 1 Jan 1995 Cross Ref Connection formula of symmetric A-type Jackson integralsDuke Mathematical Journal, Vol. 74, No. 1 | 1 Apr 1994 Cross Ref Volume 25, Issue 2| 1994SIAM Journal on Mathematical Analysis243-ix History Submitted:12 March 1992Accepted:11 June 1993Published online:01 August 2006 InformationCopyright © 1994 © Society for Industrial and Applied MathematicsKeywordsconnection coefficientq-difference equationJackson integralPDF Download Article & Publication DataArticle DOI:10.1137/S0036141092227460Article page range:pp. 256-273ISSN (print):0036-1410ISSN (online):1095-7154Publisher:Society for Industrial and Applied Mathematics
Referência(s)