Artigo Revisado por pares

Shape-Based Design of Low-Thrust Trajectories to Cislunar Lagrangian Point

2014; American Institute of Aeronautics and Astronautics; Volume: 37; Issue: 4 Linguagem: Inglês

10.2514/1.g000165

ISSN

1533-3884

Autores

E. Vellutini, Giulio Avanzini,

Tópico(s)

Spacecraft Design and Technology

Resumo

No AccessEngineering NoteShape-Based Design of Low-Thrust Trajectories to Cislunar Lagrangian PointElena Vellutini and Giulio AvanziniElena VellutiniDepartment of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Turin, Italy and Giulio AvanziniDepartment of Engineering, Università del Salento, 73100 Lecce, ItalyPublished Online:25 Jun 2014https://doi.org/10.2514/1.G000165SectionsView Full TextPDFPDF Plus ToolsAdd to favoritesDownload citationTrack citations ShareShare onFacebookTwitterLinked InRedditEmail About References [1] Petropoulos A. E. and Longuski J. M., "Shape-Based Algorithm for Automated Design of Low-Thrust, Gravity Assist Trajectories," Journal of Spacecraft and Rockets, Vol. 41, No. 5, 2004, pp. 787–796. doi:https://doi.org/10.2514/1.13095 JSCRAG 0022-4650 LinkGoogle Scholar[2] Vasile M., Summerer L., Galvez A. and Ongaro F., "Design of Low-Thrust Trajectories for the Exploration of the Outer Solar System," 54th International Astronautical Congress, International Astronautical Federation Paper IAC-03-A.P.14, 2003. LinkGoogle Scholar[3] Lee S., von Allmen P., Fink W., Petropoulos A. E. and Terrile R. J., "Design and Optimization of Low-Thrust Orbit Transfers," Proceedings of the IEEE Aerospace Conference, IEEE Publ., Piscataway, NJ, 2005, pp. 855–869. doi:https://doi.org/10.1109/AERO.2005.1559377 Google Scholar[4] Kluever C. A., "Low-Thrust Trajectory Optimization Using Orbital Averaging and Control Parameterization," Spacecraft Trajectory Optimization, edited by Conway B. A., Cambridge Univ. Press, New York, 2010, pp. 112–138. doi:https://doi.org/10.1017/CBO9780511778025 CrossrefGoogle Scholar[5] Betts J. T., "Survey of Numerical Methods for Trajectory Optimization," Journal of Guidance, Control, and Dynamics, Vol. 21, No. 2, 1998, pp. 193–207. doi:https://doi.org/10.2514/2.4231 JGCDDT 0162-3192 LinkGoogle Scholar[6] Herman A. L. and Conway B. A., "Direct Optimization Using Collocation Based on High-Order Gauss-Lobatto Quadrature Rules," Journal of Guidance, Control, and Dynamics, Vol. 19, No. 3, 1996, pp. 592–599. doi:https://doi.org/10.2514/3.21662 JGCDDT 0162-3192 LinkGoogle Scholar[7] Colasurdo G. and Casalino L., "Indirect Methods for the Optimization of Spacecraft Trajectories," Modeling and Optimization in Space Engineering, edited by Fasano G. and Pinter J. D., Vol. 73, Springer, New York, 2012, pp. 141–158. doi:https://doi.org/10.1007/978-1-4614-4469-5 CrossrefGoogle Scholar[8] Izzo D., "Lambert's Problem for Exponential Sinusoids," ACT7 European Space Research and Technology Centre, Internal Rept. TR-ACTRPT-4100DI-LMSP01, April 2005. Google Scholar[9] Petropoulos A. E. and Longuski J. M., "A Review of Some Exact Solutions to the Planar Equations of Motion of a Thrusting Spacecraft," Second International Symposium on Low Thrust Trajectories, Toulouse, France, June 2002. Google Scholar[10] Wall B. J. and Conway B. A., "Shape-Based Approach to Low-Thrust Rendezvous Trajectory Design," Journal of Guidance, Control, and Dynamics, Vol. 32, No. 1, 2009, pp. 95–101. doi:https://doi.org/10.2514/1.36848 JGCDDT 0162-3192 LinkGoogle Scholar[11] Vasile M., Schutze O., Junge O., Radice G., Dellnitz M. and Izzo D., "Spiral Trajectories in Global Optimization of Interplanetary and Orbital Transfers," ESA, Final Rept. TR-ACT-RPT-ARI-05-4106z, 2006. Google Scholar[12] Gomez G., Jorba A., Masdemont J. and Simò C., "Study of the Transfer from the Earth to a Halo Orbit Around the Equilibrium Point L1," Celestial Mechanics and Dynamical Astronomy, Vol. 56, No. 4, 1993, pp. 541–562. doi:https://doi.org/10.1007/BF00696185 CrossrefGoogle Scholar[13] Koon W. S., Lo M. W., Marsden J. E. and Ross S. D., "Dynamical Systems, the Three-Body Problem and Space Mission Design," edited by Fiedler K. G. B. and Sprekels J., International Conference on Differential Equations, World Scientific, Berlin, 2000, pp. 1167–1181. Google Scholar[14] Sukhanov A. and Eismont N., "Low Thrust Transfer to Sun–Earth L1 and L2 Points with a Constraint on the Thrust Direction," International Conference on Libration Point Orbits and Applications, Insitut d'Estudis Espacials de Catalunya, Girona, Spain, 2002. Google Scholar[15] Gomez G., Masdemont J. and Simò C., "Quasi Halo Orbits Associated with Libration Points," Journal of Astronautical Sciences, Vol. 42, No. 2, 1998, pp. 135–176. Google Scholar[16] Lo M. W., "Halo Orbit Generation Using the Center Manifold," Advances in the Astronautical Sciences, Vol. 95, Pt. 1, 1997, pp. 109–116. Google Scholar[17] Mondelo J.-M., Barrabes E., Gomez G. and Olle M., "Fast Numerical Computation of Lissajous and Quasi-Halo Libration Point Trajectories and Their Invariant Manifolds," 63rd International Astronautical Congress, International Astronautical Federation, Paper IAC-12,C1,6,9,x14982, 2012. Google Scholar[18] Kolemen E., Kasdin N. J. and Gurfil P., "Quasi-Periodic Orbits of the Restricted Three-Body Problem Made Easy," AIP Conference Proceedings, Vol. 886, New Trends in Astrodynamics and Applications III, Aug. 2006, pp. 68–77. doi:https://doi.org/0.1063/1.2710044 Google Scholar[19] Gomez G., Lo M. W., Koon W. S., Marsden J. E., Masdemont J. and Ross S. D., "Connecting Orbits and Invariant Manifolds in the Spatial Restricted Three-Body Problem," Nonlinearity, Vol. 17, No. 5, 2004, pp. 1571–1606. doi:https://doi.org/10.1088/0951-7715/17/5/002 NONLE5 0951-7715 CrossrefGoogle Scholar[20] Ozimek M. T. and Howell K. C., "Low-Thrust Transfers in the Earth–Moon System, Including Applications to Libration Point Orbits," Journal of Guidance, Control, and Dynamics Vol. 33, No. 2, 2010, pp. 533–549. doi:https://doi.org/10.2514/1.43179 JGCDDT 0162-3192 LinkGoogle Scholar[21] Martin C. and Conway B. A., "Optimal Low-Thrust Trajectories Using Stable Manifolds," Spacecraft Trajectory Optimization, edited by Conway B. A., Cambridge Univ. Press, New York, 2010, pp. 238–262. doi:https://doi.org/10.1017/CBO9780511778025 CrossrefGoogle Scholar[22] Arora N. and Strange N., "Low Energy, Low Thrust Unified Solver for Rapid Mission Design," Proceedings of the 23rd AAS/AIAA Space Flight Mechanics Meeting, American Astronautical Society and AIAA, Kauai, Hawaii, 2013. Google Scholar[23] Szebehely V., "Theory of Orbits: The Restricted Problem of Three Bodies," Defense Technical Information Center Document, 1967. CrossrefGoogle Scholar[24] Deb K., "Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II," IEEE Transactions on Evolutionary Computation, Vol. 6, No. 2, 2002, pp. 182–197. doi:https://doi.org/10.1109/4235.996017 ITEVF5 1089-778X CrossrefGoogle Scholar[25] Lin S., "NGPM—A NSGA-II Program in MATLAB," Ver. 1.4, http://www.mathworks.com/matlabcentral/fileexchange/31166-ngpm-a-nsga-ii-program-in-matlab-v1-4l [retrieved 1 May 2012]. Google Scholar Previous article Next article

Referência(s)