Artigo Acesso aberto Revisado por pares

Human gephyrin is encompassed within giant functional noncoding yin–yang sequences

2015; Nature Portfolio; Volume: 6; Issue: 1 Linguagem: Inglês

10.1038/ncomms7534

ISSN

2041-1723

Autores

Sharlee Climer, Alan R. Templeton, Weixiong Zhang,

Tópico(s)

Genomics and Chromatin Dynamics

Resumo

Gephyrin is a highly conserved gene that is vital for the organization of proteins at inhibitory receptors, molybdenum cofactor biosynthesis and other diverse functions. Its specific function is intricately regulated and its aberrant activities have been observed for a number of human diseases. Here we report a remarkable yin–yang haplotype pattern encompassing gephyrin. Yin–yang haplotypes arise when a stretch of DNA evolves to present two disparate forms that bear differing states for nucleotide variations along their lengths. The gephyrin yin–yang pair consists of 284 divergent nucleotide states and both variants vary drastically from their mutual ancestral haplotype, suggesting rapid evolution. Several independent lines of evidence indicate strong positive selection on the region and suggest these high-frequency haplotypes represent two distinct functional mechanisms. This discovery holds potential to deepen our understanding of variable human-specific regulation of gephyrin while providing clues for rapid evolutionary events and allelic migrations buried within human history. Yin–yang haplotypes are stretches of DNA that differ at multiple markers and exhibit two disparate forms. Here, the authors identify a pair of 284-nucleotide-long yin–yang haplotypes that encompass the gephyringene, and show that these human-specific haplotypes evolved rapidly and bear functional implications.

Referência(s)