CONTINUOUS CHAOS—FOUR PROTOTYPE EQUATIONS
1979; Wiley; Volume: 316; Issue: 1 Linguagem: Francês
10.1111/j.1749-6632.1979.tb29482.x
ISSN1749-6632
Autores Tópico(s)Spectroscopy and Quantum Chemical Studies
ResumoAnnals of the New York Academy of SciencesVolume 316, Issue 1 p. 376-392 CONTINUOUS CHAOS—FOUR PROTOTYPE EQUATIONS Otto E. Rössler, Otto E. Rössler Institute for Physical and Theoretical Chemistry University of Tübingen 7400 Tübingen, Federal Republic of Germany Institute for Theoretical Physics University of Stuttgart Federal Republic of GermanySearch for more papers by this author Otto E. Rössler, Otto E. Rössler Institute for Physical and Theoretical Chemistry University of Tübingen 7400 Tübingen, Federal Republic of Germany Institute for Theoretical Physics University of Stuttgart Federal Republic of GermanySearch for more papers by this author First published: February 1979 https://doi.org/10.1111/j.1749-6632.1979.tb29482.xCitations: 305AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat References 1Liénard, A. 1929. Etude des oscillations entretenues (2 parts), Rev. Gen. Electr. 23: 901–912, 946–954. Google Scholar 2Rössler, O. E. 1974. Chemical automata in homogeneous and reaction-diffusion kinetics. Springer Lecture Notes Biomath. 4: 399–418. 10.1007/978-3-642-80885-2_23 Google Scholar 3Khaikin, S. E. 1930. Continuous and discontinuous oscillations. Zh. Prikl. Fiz. 7: 21. Google Scholar 4Rössler, O. E. 1976. Chaotic behavior in simple reaction systems. Z. Naturforsch. 31a: 259–264. Google Scholar 5Takens, F. 1976. Implicit differential equations: Some open problems. Springer Lecture Notes Math. 535: 237–253. 10.1007/BFb0080503 Google Scholar 6Rössler, O. E. 1977. Chaos in abstract kinetics: Two prototypes. Bull. Math. Biol. 39: 275–289. 10.1007/BF02462866 CASPubMedWeb of Science®Google Scholar 7Rössler, O. E. 1977. Continuous chaos. In Synergetics: A Workshop. H. Haken, Ed. Springer-Verlag, New York & Heidelberg . 184–199. 10.1007/978-3-642-66784-8_17 Google Scholar 8Ulam, S. 1963. Some properties of certain nonlinear transformations. In Mathematical Models in the Physical Sciences. S. Drobot, Ed. Prentice Hall. 85–95. Google Scholar 9Myrberg, P. J. 1963. Iteration of the real polynomials of second degree III (in German). Ann. Acad. Sci. Fenn. Ser. A, 336/3: 1–18. Google Scholar 10May, R. M. 1976. Simple mathematical models with very complicated dynamics. Nature 261: 459–467. 10.1038/261459a0 CASPubMedWeb of Science®Google Scholar 11Li, T. Y. & J. A. Yorke 1975. Period three implies chaos. Am. Math. Mon. 82: 985–992. 10.2307/2318254 Web of Science®Google Scholar 12Zeeman, E. C. 1972. In Toward a Theoretical Biology C. H. Waddington, Ed. Edinburgh University Press. 4: 8–67. Google Scholar 13Smale, S. & R. F. Williams 1976. The qualitative analysis of a difference equation of population growth. J. Math. Biol. 3: 1–3. 10.1007/BF00307853 CASPubMedWeb of Science®Google Scholar 14Rössler, O. E. 1977. Syncope implies chaos in walking-stick maps. Z. Naturforsch. 32a: 607–613. Google Scholar 15Smale, S. 1965. Diffeomorphisms with many periodic points. In Differential and Combinatorial Topology. S. Cairns, Ed. Princeton University Press. 63–80. Google Scholar 16Smale, S. 1967. Differentiable dynamical systems. Bull. Am. Math. Soc. 73: 747–817. 10.1090/S0002-9904-1967-11798-1 Web of Science®Google Scholar 17Ruelle, D. & F. Takens 1971. On the nature of turbulence. Commun. Math. Phys. 20: 167–192. 10.1007/BF01646553 Web of Science®Google Scholar 18Rössler, O. E. 1976. Different types of chaos in two simple differential equations. Z. Naturforsch. 31a: 1664–1670. Google Scholar 19Guckenheimer, J. 1976. A strange, strange attractor. In The Hopf Bifurcation and Us Applications. J. E. Marsden & M. McCracken, Eds. Springer-Verlag, New York & Heidelberg . 368–381. 10.1007/978-1-4612-6374-6_25 Google Scholar 20Williams, R. F. 1976. The structure of Lorenz attractors. Preprint. Google Scholar 21Kaplan, J. L. & J. A. Yorke 1977. Preturbulence: A regime observed in a fluid flow model of Lorenz. Preprint. Google Scholar 22Minorsky, N. 1974. Nonlinear Oscillations. R. E. Krieger, Huntington, NY . Google Scholar 23Rössler, O. E. 1972. Basic circuits of fluid automata and relaxation systems. Z. Naturforsch. 27b: 333–343. 10.1515/znb-1972-0401 Google Scholar 24Cronin-Scanlon, J. 1974. A mathematical model for catatonic schizophrenia. In Ann. N.Y. Acad. Sci. O. Gurel, Ed. 231: 112–120. Google Scholar 25O'Malley, R. E. 1974. Introduction to Singular Perturbations. Academic Press, New York & London . 86. Google Scholar 26Plant, R. E. 1977. Crustacean cardiac pacemaker model: An analysis of the eigen-value approximation. Math. Biosci. In press. 10.1016/0025-5564(77)90021-9 Google Scholar 27Rössler, O. E. 1977. Quasiperiodic oscillation in an abstract reaction system. Biophys. J. 17: 281a. Abstract. Google Scholar 28Gerber, P. D. 1973. Left alternative algebras and quadratic differential equations HI. IBM Res. Rep. RC 4440. 1–22. Google Scholar 29Rössler, O. E. 1976. An equation for continuous chaos. Phys. Lett. 57A: 397–398. 10.1016/0375-9601(76)90101-8 Web of Science®Google Scholar 30Lorenz, E. N. 1963. Deterministic nonperiodic flow. J. Atmos. Sci. 20: 130–141. 10.1175/1520-0469(1963)020 2.0.CO;2 Web of Science®Google Scholar 31Hénon, M. & Y. Pomeau 1976. Two strange attractors with a simple structure. Springer Lecture Notes Math. 565: 29–68. 10.1007/BFb0091446 Google Scholar 32Rössler, O. E. 1977. Horseshoe-map chaos in the Lorenz equation. Phys. Lett. 60A: 392–394. 10.1016/0375-9601(77)90029-9 Google Scholar 33Newhouse, S. & J. Palis 1976. Cycles and bifurcation theory. Astérisque 31: 44–140. Google Scholar 34Birkhoff, G. D. 1927. On the periodic motions of dynamical systems. Acta Math. 50: 359–379. 10.1007/BF02421325 Web of Science®Google Scholar 35Moser, J. 1973. Stable and Random Motion in Dynamical Systems, with Special Emphasis on Celestial Mechanics. Princeton University Press. Google Scholar 36Gumowski, I. 1976. Contribution de l'automatique au problème de réversibilité microscopique-irréversibilité macroscopique. R.A.I.R.O. Automatique 10: 7–42. Google Scholar 37Rössler, O. E. 1977. Toroidal oscillation in a 3-variable abstract reaction system. Z. Naturforsch. 32a: 299–301. Google Scholar 38Thom, R. 1976. Introduction to qualitative dynamics (in French). Astérisque 31: 3–13. Google Scholar 39Thom, R. 1976. Structural Stability and Morphogenesis. Benjamin, Reading, Mass . Google Scholar 40Gurel, O. 1976. Peeling studies of complex dynamical systems. In Simulation of Systems. L. Dekker, Ed. North-Holland, Amsterdam . 53–58. Google Scholar Citing Literature Volume316, Issue1Bifurcation Theory and Applications in Scientific DisciplinesFebruary 1979Pages 376-392 ReferencesRelatedInformation
Referência(s)