Artigo Revisado por pares

Increase of Learning Capability with Increase of Brain-Size

1956; University of Chicago Press; Volume: 90; Issue: 851 Linguagem: Inglês

10.1086/281911

ISSN

1537-5323

Autores

Bernhard Rensch,

Tópico(s)

Physiological and biochemical adaptations

Resumo

Previous articleNext article No AccessIncrease of Learning Capability with Increase of Brain-SizeBernhard RenschBernhard RenschPDFPDF PLUS Add to favoritesDownload CitationTrack CitationsPermissionsReprints Share onFacebookTwitterLinkedInRedditEmail SectionsMoreDetailsFiguresReferencesCited by The American Naturalist Volume 90, Number 851Mar. - Apr., 1956 Published for The American Society of Naturalists Article DOIhttps://doi.org/10.1086/281911 Views: 13Total views on this site Citations: 114Citations are reported from Crossref PDF download Crossref reports the following articles citing this article:Carel P. van Schaik, Zitan Song, Caroline Schuppli, Szymon M. Drobniak, Sandra A. Heldstab, Michael Griesser Extended parental provisioning and variation in vertebrate brain sizes, PLOS Biology 21, no.22 (Feb 2023): e3002016.https://doi.org/10.1371/journal.pbio.3002016Joan Garcia-Porta, Daniel Sol, Matt Pennell, Ferran Sayol, Antigoni Kaliontzopoulou, Carlos A. Botero Niche expansion and adaptive divergence in the global radiation of crows and ravens, Nature Communications 13, no.11 (Apr 2022).https://doi.org/10.1038/s41467-022-29707-5Gunther Schuh, Thomas Scheuer Increasing Labor Productivity in Intelligent Manufacturing Enterprises : An Approach to Identify Relevant Capability Bundles, (Aug 2022): 1–12.https://doi.org/10.23919/PICMET53225.2022.9882721Justin W. Baldwin, Joan Garcia‐Porta, Carlos A. Botero, John Wiens Phenotypic responses to climate change are significantly dampened in big‐brained birds, Ecology Letters 25, no.44 (Feb 2022): 939–947.https://doi.org/10.1111/ele.13971I. B. Muratore, E. M. Fandozzi, J. F. A. Traniello Behavioral performance and division of labor influence brain mosaicism in the leafcutter ant Atta cephalotes, Journal of Comparative Physiology A 208, no.22 (Feb 2022): 325–344.https://doi.org/10.1007/s00359-021-01539-6Christian A. Perez-Martinez, Manuel Leal Lizards as models to explore the ecological and neuroanatomical correlates of miniaturization, Behaviour 158, no.12-1312-13 (Jul 2021): 1121–1168.https://doi.org/10.1163/1568539X-bja10104Thomas Carle A Review of Effects of Environment on Brain Size in Insects, Insects 12, no.55 (May 2021): 461.https://doi.org/10.3390/insects12050461Kawsar Alami, Sayed Yousof Mousavi Afghan Chehelghoza (Pinus gerardiana L.) Pine Nut Diet Enhances the Learning and Memory in Male Rats, Nutrition and Dietary Supplements Volume 12 (Dec 2020): 277–288.https://doi.org/10.2147/NDS.S278350Joseph T. Kilmer, Rafael L. Rodríguez Miniature spiders (with miniature brains) forget sooner, Animal Behaviour 153 (Jul 2019): 25–32.https://doi.org/10.1016/j.anbehav.2019.04.012Emma Van der Woude, Jitte Groothuis, Hans M Smid No gains for bigger brains: Functional and neuroanatomical consequences of relative brain size in a parasitic wasp, Journal of Evolutionary Biology (Mar 2019).https://doi.org/10.1111/jeb.13450W. Tecumseh Fitch Toward a computational framework for cognitive biology: Unifying approaches from cognitive neuroscience and comparative cognition, Physics of Life Reviews 11, no.33 (Sep 2014): 329–364.https://doi.org/10.1016/j.plrev.2014.04.005Olga V. Perepelkina, Vassilissa A. Golibrodo, Irina G. Lilp, Inga I. Poletaeva Mice selected for large and small brain weight: The preservation of trait differences after the selection was discontinued, Advances in Bioscience and Biotechnology 04, no.0606 (Jan 2013): 1–8.https://doi.org/10.4236/abb.2013.46A001Karin Isler Energetic trade-offs between brain size and offspring production: Marsupials confirm a general mammalian pattern, BioEssays 33, no.33 (Jan 2011): 173–179.https://doi.org/10.1002/bies.201000123Patrick J. Lewis, Eileen Johnson, Briggs Buchanan, Steven E. Churchill The impact of changing grasslands on Late Quaternary bison of the Southern Plains, Quaternary International 217, no.1-21-2 (Apr 2010): 117–130.https://doi.org/10.1016/j.quaint.2009.08.007Margaret J. Couvillon, Gloria DeGrandi-Hoffman, Wulfila Gronenberg Africanized honeybees are slower learners than their European counterparts, Naturwissenschaften 97, no.22 (Nov 2009): 153–160.https://doi.org/10.1007/s00114-009-0621-yAlberto Civetta, Chandler B. Andrews, T. Ryan Gregory Genome size is inversely correlated with relative brain size in parrots and cockatoos, Genome 52, no.33 (Mar 2009): 261–267.https://doi.org/10.1139/G09-003Naoko Irie-Sugimoto, Tessei Kobayashi, Takao Sato, Toshikazu Hasegawa Evidence of means–end behavior in Asian elephants (Elephas maximus), Animal Cognition 11, no.22 (Dec 2007): 359–365.https://doi.org/10.1007/s10071-007-0126-zB.J. Anderson, N.H.G. Holford Mechanism-Based Concepts of Size and Maturity in Pharmacokinetics, Annual Review of Pharmacology and Toxicology 48, no.11 (Feb 2008): 303–332.https://doi.org/10.1146/annurev.pharmtox.48.113006.094708Jeheskel Shoshani, William J. Kupsky, Gary H. Marchant Elephant brain, Brain Research Bulletin 70, no.22 (Jun 2006): 124–157.https://doi.org/10.1016/j.brainresbull.2006.03.016Moti Nissani, Donna Hoefler-Nissani, U Tin Lay, U Wan Htun Simultaneous Visual Discrimination In Asian Elephants, Journal of the Experimental Analysis of Behavior 83, no.11 (Jan 2005): 15–29.https://doi.org/10.1901/jeab.2005.34-04Ramiz M Salimov, Nadejda V Markina, Olga V Perepelkina, Inga I Poletaeva Exploratory behavior of F2 crosses of mouse lines selected for different brain weight: a multivariate analysis, Progress in Neuro-Psychopharmacology and Biological Psychiatry 28, no.33 (May 2004): 583–589.https://doi.org/10.1016/j.pnpbp.2004.01.016Moti Nissani Theory of Mind and Insight in Chimpanzees, Elephants, and Other Animals?, (Jan 2004): 227–261.https://doi.org/10.1007/978-1-4419-8913-0_7Simon M. Reader Relative brain size and the distribution of innovation and social learning across the nonhuman primates, (Jul 2003): 56–93.https://doi.org/10.1017/CBO9780511584022.004Nadejda V. Markina, Ramiz M. Salimov, Inga I. Poletaeva Behavioral screening of two mouse lines selected for different brain weight, Progress in Neuro-Psychopharmacology and Biological Psychiatry 25, no.55 (Jul 2001): 1083–1109.https://doi.org/10.1016/S0278-5846(01)00169-5Robert W. Williams Mapping Genes that Modulate Mouse Brain Development: A Quantitative Genetic Approach, (Jan 2000): 21–49.https://doi.org/10.1007/978-3-540-48002-0_2Wulfila Gronenberg, Bert H�lldobler Morphologic representation of visual and antennal information in the ant brain, The Journal of Comparative Neurology 412, no.22 (Sep 1999): 229–240.https://doi.org/10.1002/(SICI)1096-9861(19990920)412:2 3.0.CO;2-EU. Windhorst Specific Networks of the Cerebral Cortex: Functional Organization and Plasticity, (Jan 1996): 1105–1136.https://doi.org/10.1007/978-3-642-60946-6_55J.K. Belknap, Tamara J. Phillips, L.A. O'toole Quantitative trait loci associated with brain weight in the BXD/Ty recombinant inbred mouse strains, Brain Research Bulletin 29, no.3-43-4 (Sep 1992): 337–344.https://doi.org/10.1016/0361-9230(92)90065-6Terrence W. Deacon Fallacies of progression in theories of brain-size evolution, International Journal of Primatology 11, no.33 (Jun 1990): 193–236.https://doi.org/10.1007/BF02192869Irene M. Pepperberg, Mildred S. Funk Object permanence in four species of psittacine birds: An African Grey parrot (Psittacus erithacus), an Illiger mini macaw (Ara maracana), a parakeet (Melopsittacus undulatus), and a cockatiel (Nymphicus hollandicus), Animal Learning & Behavior 18, no.11 (Mar 1990): 97–108.https://doi.org/10.3758/BF03205244John Sivinski Mushroom body development in nymphalid butterflies: A correlate of learning?, Journal of Insect Behavior 2, no.22 (Mar 1989): 277–283.https://doi.org/10.1007/BF01053299Graham A. J. Worthy, and John P. Hickie Relative Brain Size in Marine Mammals, The American Naturalist 128, no.44 (Oct 2015): 445–459.https://doi.org/10.1086/284579Richard G. Burright, William J. Engellenner, Carolyn E. Diehl, Peter J. Donovick Wheel-running activity of Binghamton heterogeneous and fuller brain weight mice, Behavior Genetics 13, no.66 (Nov 1983): 591–599.https://doi.org/10.1007/BF01076404Martin E. Hahn, James K. Walters, Jacqueline Lavooy, John Deluca Brain growth in young mice: Evidence on the theory of phrenoblysis, Developmental Psychobiology 16, no.55 (Sep 1983): 377–383.https://doi.org/10.1002/dev.420160503Noel W. Smith Brain, Behavior, and Evolution, The Psychological Record 32, no.44 (Jun 2017): 483–490.https://doi.org/10.1007/BF03394806Jeffrey A. Gray Précis of The neuropsychology of anxiety: An enquiry into the functions of the septo-hippocampal system, Behavioral and Brain Sciences 5, no.33 (Feb 2010): 469–484.https://doi.org/10.1017/S0140525X00013066Béla Bohus Anxiety: Dysfunction of transmission or modulation?, Behavioral and Brain Sciences 5, no.33 (Feb 2010): 484–484.https://doi.org/10.1017/S0140525X00013078Andrew Crider, Paul R. Solomon Inhibition, attention, and the hippocampus, Behavioral and Brain Sciences 5, no.33 (Feb 2010): 484–485.https://doi.org/10.1017/S0140525X0001308XMichael Gabriel Homunculus in the subiculum, Behavioral and Brain Sciences 5, no.33 (Feb 2010): 485–486.https://doi.org/10.1017/S0140525X00013091Mark S. Gold, Corinne Frantz Fox "Antianxiety and opiates", Behavioral and Brain Sciences 5, no.33 (Feb 2010): 486–487.https://doi.org/10.1017/S0140525X00013108Susan D. Iversen Integrating the literature on anxiety, memory, and the hippocampus, Behavioral and Brain Sciences 5, no.33 (Feb 2010): 487–488.https://doi.org/10.1017/S0140525X0001311XD. T. D. James The evolution of hesitation, doubt, and map-making, Behavioral and Brain Sciences 5, no.33 (Feb 2010): 488–489.https://doi.org/10.1017/S0140525X00013121Daniel P. Kimble Putting anxiety in its place?, Behavioral and Brain Sciences 5, no.33 (Feb 2010): 489–489.https://doi.org/10.1017/S0140525X00013133Julian C. Leslie Conditioned suppression and behavioural inhibition, Behavioral and Brain Sciences 5, no.33 (Feb 2010): 489–490.https://doi.org/10.1017/S0140525X00013145William Lyons Some questions of strategy in neuropsychological research on anxiety, Behavioral and Brain Sciences 5, no.33 (Feb 2010): 490–491.https://doi.org/10.1017/S0140525X00013157Stephen T. Mason Noradrenaline: Attention or anxiety?, Behavioral and Brain Sciences 5, no.33 (Feb 2010): 491–492.https://doi.org/10.1017/S0140525X00013169Neil McNaughton Gray's Neuropsychology of anxiety : An enquiry into the functions of septohippocampal theories, Behavioral and Brain Sciences 5, no.33 (Feb 2010): 492–493.https://doi.org/10.1017/S0140525X00013170Lynn Nadel, Richard Morris On novelty, places, and the septo-hippocampal system, Behavioral and Brain Sciences 5, no.33 (Feb 2010): 493–494.https://doi.org/10.1017/S0140525X00013182David S. Olton Functions of the septo-hippocampal system, Behavioral and Brain Sciences 5, no.33 (Feb 2010): 494–495.https://doi.org/10.1017/S0140525X00013194Jaak Panksepp Anxiety viewed from the upper brain stem: Though panic and fear yield trepidation, should both be called anxiety?, Behavioral and Brain Sciences 5, no.33 (Feb 2010): 495–496.https://doi.org/10.1017/S0140525X00013200Karl H. Pribram, Diane McGuinness The anatomy of anxiety?, Behavioral and Brain Sciences 5, no.33 (Feb 2010): 496–498.https://doi.org/10.1017/S0140525X00013212J. N. P. Rawlins The relationship between memory and anxiety, Behavioral and Brain Sciences 5, no.33 (Feb 2010): 498–499.https://doi.org/10.1017/S0140525X00013224William Revelle The dynamics of action and the neuropsychology of anxiety, Behavioral and Brain Sciences 5, no.33 (Feb 2010): 499–499.https://doi.org/10.1017/S0140525X00013236Terry E. Robinson, Barbara A. Therrien Does hippocampal theta tell us anything about the neuropsychology of anxiety?, Behavioral and Brain Sciences 5, no.33 (Feb 2010): 500–502.https://doi.org/10.1017/S0140525X00013248Philippe Soubrié Inferring anxiety and antianxiety effects in animals, Behavioral and Brain Sciences 5, no.33 (Feb 2010): 502–503.https://doi.org/10.1017/S0140525X0001325XHolger Ursin Substrates of anxiety: But if the starting point is wrong?, Behavioral and Brain Sciences 5, no.33 (Feb 2010): 503–504.https://doi.org/10.1017/S0140525X00013261Michael L. Woodruff The septo-hippocampal system and behavior: Difficulties in finding the exit, Behavioral and Brain Sciences 5, no.33 (Feb 2010): 504–504.https://doi.org/10.1017/S0140525X00013273Marvin Zuckerman Leaping up the phylogenetic scale in explaining anxiety: Perils and possibilities, Behavioral and Brain Sciences 5, no.33 (Feb 2010): 505–506.https://doi.org/10.1017/S0140525X00013285Jeffrey A. Gray On mapping anxiety, Behavioral and Brain Sciences 5, no.33 (Feb 2010): 506–534.https://doi.org/10.1017/S0140525X00013297Timothy D. Johnston Selective Costs and Benefits in the Evolution of Learning, (Jan 1982): 65–106.https://doi.org/10.1016/S0065-3454(08)60046-7Richard J. Smith Rethinking allometry, Journal of Theoretical Biology 87, no.11 (Nov 1980): 97–111.https://doi.org/10.1016/0022-5193(80)90222-2Richard G. Cutler Central vs. Peripheral Aging, (Jan 1980): 261–298.https://doi.org/10.1007/978-1-4684-3734-8_23Sue Taylor Parker, Kathleen Rita Gibson A developmental model for the evolution of language and intelligence in early hominids, Behavioral and Brain Sciences 2, no.33 (May 2011): 367–381.https://doi.org/10.1017/S0140525X0006307XCharles J. Brainerd Recapitulationism, Piaget, and the evolution of intelligence: déjà vu, Behavioral and Brain Sciences 2, no.33 (May 2011): 381–382.https://doi.org/10.1017/S0140525X00063081Suzanne Chevalier-Skolnikoff The gestural abilities of apes, Behavioral and Brain Sciences 2, no.33 (May 2011): 382–383.https://doi.org/10.1017/S0140525X00063093William Orr Dingwall Reconstruction of the Parker/Gibson "model" for the evolution of intelligence, Behavioral and Brain Sciences 2, no.33 (May 2011): 383–384.https://doi.org/10.1017/S0140525X0006310XG. Ettlinger Does development tell us about evolution?, Behavioral and Brain Sciences 2, no.33 (May 2011): 384–384.https://doi.org/10.1017/S0140525X00063111Harold D. Fishbein An evolutionary perspective of the family, Behavioral and Brain Sciences 2, no.33 (May 2011): 384–385.https://doi.org/10.1017/S0140525X00063123Stephen Jay Gould Panselectionist pitfalls in Parker & Gibson's model for the evolution of intelligence, Behavioral and Brain Sciences 2, no.33 (May 2011): 385–386.https://doi.org/10.1017/S0140525X00063135Howard E. Gruber Protocultural factors in a constructionist approach to intellectual evolution, Behavioral and Brain Sciences 2, no.33 (May 2011): 386–387.https://doi.org/10.1017/S0140525X00063147Gordon W. Hewes Some complexities in the evolution of language, Behavioral and Brain Sciences 2, no.33 (May 2011): 387–388.https://doi.org/10.1017/S0140525X00063159Glynn L. Isaac Evolutionary hypotheses, Behavioral and Brain Sciences 2, no.33 (May 2011): 388–388.https://doi.org/10.1017/S0140525X00063160V. V. Ivanov On the development of sign systems in primates, Behavioral and Brain Sciences 2, no.33 (May 2011): 388–389.https://doi.org/10.1017/S0140525X00063172Alison Jolly Feeding versus social factors in cognitive evolution: can't we have it both ways?, Behavioral and Brain Sciences 2, no.33 (May 2011): 389–390.https://doi.org/10.1017/S0140525X00063184J. Kitahara-Frisch The evolution of intelligence: making assumptions explicit and hypotheses testable, Behavioral and Brain Sciences 2, no.33 (May 2011): 390–391.https://doi.org/10.1017/S0140525X00063196Melvin Konner Origins of language: a proposed moratorium, Behavioral and Brain Sciences 2, no.33 (May 2011): 391–391.https://doi.org/10.1017/S0140525X00063202John T. Lamendella Assumptions about hominid "intelligence" and "language.", Behavioral and Brain Sciences 2, no.33 (May 2011): 391–392.https://doi.org/10.1017/S0140525X00063214Liliane Lurçat Graphic skills, posture, and the evolution of intelligence, Behavioral and Brain Sciences 2, no.33 (May 2011): 392–393.https://doi.org/10.1017/S0140525X00063226W.C. McGrew Habitat and the adaptiveness of primate intelligence, Behavioral and Brain Sciences 2, no.33 (May 2011): 393–393.https://doi.org/10.1017/S0140525X00063238John Macnamara Doubts about the form of development, Behavioral and Brain Sciences 2, no.33 (May 2011): 393–394.https://doi.org/10.1017/S0140525X0006324XAlexander Marshack Data for a theory of language origins, Behavioral and Brain Sciences 2, no.33 (May 2011): 394–396.https://doi.org/10.1017/S0140525X00063251Sue Savage-Rumbaugh, Duane M. Rumbaugh, Sally Boysen Chimpanzees and protolanguage, Behavioral and Brain Sciences 2, no.33 (May 2011): 396–397.https://doi.org/10.1017/S0140525X00063263Euclid O. Smith An alternative model for language acquisition, Behavioral and Brain Sciences 2, no.33 (May 2011): 397–397.https://doi.org/10.1017/S0140525X00063275Charles T. Snowdon, Jeffrey A. French Ontogeny does not always recapitulate phylogeny, Behavioral and Brain Sciences 2, no.33 (May 2011): 397–398.https://doi.org/10.1017/S0140525X00063287Jan Wind The evolution of intelligence: rehabilitation of recapitulation?, Behavioral and Brain Sciences 2, no.33 (May 2011): 398–399.https://doi.org/10.1017/S0140525X00063299S.T. Parker, K.R. Gibson How the child got his stages, Behavioral and Brain Sciences 2, no.33 (May 2011): 399–407.https://doi.org/10.1017/S0140525X00063305WILLIAM I. RIDDELL Cerebral Indices and Behavioral Differences, (Jan 1979): 89–109.https://doi.org/10.1016/B978-0-12-314650-2.50011-2JOHN L. FULLER Fuller BWS Lines: History and Results, (Jan 1979): 187–204.https://doi.org/10.1016/B978-0-12-314650-2.50016-1CRAIG JENSEN Learning Performance in Mice Genetically Selected for Brain Weight: Problems of Generality, (Jan 1979): 205–220.https://doi.org/10.1016/B978-0-12-314650-2.50017-3RICHARD J. GOSS Adaptive Plasticity of the Nervous System, (Jan 1978): 183–209.https://doi.org/10.1016/B978-0-12-293055-3.50012-1E. Haase, C. Otto, H. Murbach Brain weight in homing and 'non-homing' pigeons, Experientia 33, no.55 (May 1977): 606–607.https://doi.org/10.1007/BF01946526Thomas H. Roderick, Richard E. Wimer, Cynthia C. Wimer Genetic Manipulation of Neuroanatomical Traits, (Jan 1976): 143–178.https://doi.org/10.1007/978-1-4757-1653-5_7B. Padeh, M. Soller Genetic and environmental correlations between brain weight and maze learning in inbred strains of mice and their F1 hybrids, Behavior Genetics 6, no.11 (Jan 1976): 31–41.https://doi.org/10.1007/BF01065676Leonard Radinsky EVOLUTION OF THE BRAIN AND INTELLIGENCE, Evolution 29, no.11 (May 2017): 190–192.https://doi.org/10.1111/j.1558-5646.1975.tb00828.xWilliam Riddell, Kenneth Corl, Van Dyke Bennett, Richard O. Reimers Discrimination learning differences and similarities as a function of brain index, Physiology & Behavior 13, no.33 (Sep 1974): 401–405.https://doi.org/10.1016/0031-9384(74)90095-XDaniel L. Yeager Response to Environmental Change in Mice Genetically Selected for High, Medium and Low Brain Weights, Psychological Reports 34, no.33 (Aug 2016): 763–769.https://doi.org/10.2466/pr0.1974.34.3.763Alberto Oliverio Evolutionary mechanisms in behaviour: An intraspecific genetic approach, Journal of Human Evolution 3, no.11 (Jan 1974): 1–18.https://doi.org/10.1016/0047-2484(74)90103-1R.E. Passingham, G. Ettlinger A Comparison of Cortical Functions in Man and the Other Primates, (Jan 1974): 233–299.https://doi.org/10.1016/S0074-7742(08)60198-1Thomas H. Roderick, Richard E. Wimer, Cynthia C. Wimer, Philip A. Schwartzkroin Genetic and phenotypic variation in weight of brain and spinal cord between inbred strains of mice, Brain Research 64 (Dec 1973): 345–353.https://doi.org/10.1016/0006-8993(73)90188-1 Bibliography, (Jan 1973): 435–456.https://doi.org/10.1016/B978-0-12-385250-2.50028-6Axel Friede Abstraktionsversuche auf "Gleich" gegen "Ungleich" mit Dohlen, Zeitschrift für Tierpsychologie 30, no.44 (Apr 2010): 383–404.https://doi.org/10.1111/j.1439-0310.1972.tb00865.xJohn L. Fuller, Helen D. Geils Brain growth in mice selected for high and low brain weight, Developmental Psychobiology 5, no.44 (Jan 1972): 307–318.https://doi.org/10.1002/dev.420050404Peter J. Livesey Critique and comment. A consideration of the neural basis of intelligent behavior: Comparative studies, Behavioral Science 15, no.22 (Mar 1970): 164–170.https://doi.org/10.1002/bs.3830150207M. Schulze Schencking Untersuchungen zur visuellen Lerngeschwindigkeit und Lernkapazität bei Bienen, Hummeln und Ameisen1, Zeitschrift für Tierpsychologie 27, no.55 (Apr 2010): 513–552.https://doi.org/10.1111/j.1439-0310.1970.tb01885.x Harry J. Jerison Brain Evolution and Dinosaur Brains, The American Naturalist 103, no.934934 (Oct 2015): 575–588.https://doi.org/10.1086/282627Stephen Bernstein, Ruth A. Bernstein Relationships between foraging efficiency and the size of the head and component brain and sensory structures in the red wood ant, Brain Research 16, no.11 (Nov 1969): 85–104.https://doi.org/10.1016/0006-8993(69)90087-0Merrill F. Elias Differences in Spatial Discrimination Reversal Learning for Mice Genetically Selected for High Brain Weight and Unselected Controls, Perceptual and Motor Skills 28, no.33 (Oct 2016): 707–712.https://doi.org/10.2466/pms.1969.28.3.707Graeme S. Halford On the validity of the s-r mediation explanation of the ease of reversal concept shifts, Australian Journal of Psychology 21, no.11 (Feb 2011): 49–54.https://doi.org/10.1080/00049536908255769P. J. Livesey A discrimination generalisation task as a test of cognitive ability in animals 1, Australian Journal of Psychology 20, no.11 (Feb 2011): 49–54.https://doi.org/10.1080/00049536808255738Cynthia Wimer, Lee Prater Some Behavioral Differences in Mice Genetically Selected for High and Low Brain Weight, Psychological Reports 19, no.33 (Aug 2016): 675–681.https://doi.org/10.2466/pr0.1966.19.3.675STEPHEN JAY GOULD ALLOMETRY AND SIZE IN ONTOGENY AND PHYLOGENY, Biological Reviews 41, no.44 (Nov 1966): 587–638.https://doi.org/10.1111/j.1469-185X.1966.tb01624.x Ernst Caspari Selective Forces in the Evolution of Man, The American Naturalist 97, no.892892 (Oct 2015): 5–14.https://doi.org/10.1086/282249Dieter Backhaus Experimentelle Untersuchungen über die Sehschärfe und das Farbsehen einiger Huftiere, Zeitschrift für Tierpsychologie 16, no.44 (Apr 2010): 445–467.https://doi.org/10.1111/j.1439-0310.1959.tb02068.xBernhard Rensch Die Abh�ngigkeit der Struktur und der Leistungen tierischer Gehirne von ihrer Gr��e, Die Naturwissenschaften 45, no.88 (Jan 1958): 175–180.https://doi.org/10.1007/BF00621319

Referência(s)
Altmetric
PlumX