Redifferentiation of Single Mesophyll Cells into Tracheary Elements
1994; University of Chicago Press; Volume: 155; Issue: 3 Linguagem: Inglês
10.1086/297166
ISSN1537-5315
Autores Tópico(s)Protist diversity and phylogeny
ResumoPrevious articleNext article No AccessInvited ReviewsRedifferentiation of Single Mesophyll Cells into Tracheary ElementsHiroo FukudaHiroo FukudaPDFPDF PLUS Add to favoritesDownload CitationTrack CitationsPermissionsReprints Share onFacebookTwitterLinkedInRedditEmail SectionsMoreDetailsFiguresReferencesCited by International Journal of Plant Sciences Volume 155, Number 3May, 1994 Article DOIhttps://doi.org/10.1086/297166 Citations: 27Citations are reported from Crossref Copyright 1994 The University of ChicagoPDF download Crossref reports the following articles citing this article:Filiz VARDAR, Fatma YANIK, Aslıhan ÇETİNBAŞ GENÇ Bitkilerde Programlı Hücre Ölümü, Marmara Fen Bilimleri Dergisi 30, no.11 (Mar 2018): 61–70.https://doi.org/10.7240/marufbd.303836Elena T. Iakimova, Ernst J. Woltering Xylogenesis in zinnia (Zinnia elegans) cell cultures: unravelling the regulatory steps in a complex developmental programmed cell death event, Planta 245, no.44 (Feb 2017): 681–705.https://doi.org/10.1007/s00425-017-2656-1Suong Nguyen, David McCurdy Transdifferentiation: A Plant Perspective, (Jun 2016): 298–319.https://doi.org/10.1201/b20316-21Joanna Kacprzyk, Cara T. Daly, Paul F. McCabe The Botanical Dance of Death, (Jan 2011): 169–261.https://doi.org/10.1016/B978-0-12-385851-1.00004-4Eugene A. Vaganov, Kevin J. Anchukaitis, Michael N. Evans How Well Understood Are the Processes that Create Dendroclimatic Records? A Mechanistic Model of the Climatic Control on Conifer Tree-Ring Growth Dynamics, (Sep 2010): 37–75.https://doi.org/10.1007/978-1-4020-5725-0_3Renee M. Borges Phenotypic plasticity and longevity in plants and animals: cause and effect?, Journal of Biosciences 34, no.44 (Dec 2008): 605–611.https://doi.org/10.1007/s12038-009-0078-3Arunika H. L. A. N. Gunawardena Programmed cell death and tissue remodelling in plants: Fig. 1., Journal of Experimental Botany 59, no.33 (Oct 2007): 445–451.https://doi.org/10.1093/jxb/erm189Peter W. Barlow, Jacqueline Lück Patterned cell development in the secondary phloem of dicotyledonous trees: a review and a hypothesis, Journal of Plant Research 119, no.44 (May 2006): 271–291.https://doi.org/10.1007/s10265-006-0280-4Daphne J. Osborne, Michael T. McManus Hormones, Signals and Target Cells in Plant Development, 25 (Aug 2009).https://doi.org/10.1017/CBO9780511546228Shinichrio Sawa, Taku Demura, Gorou Horiguchi, Minoru Kubo, Hiroo Fukuda The ATE Genes Are Responsible for Repression of Transdifferentiation into Xylem Cells in Arabidopsis, Plant Physiology 137, no.11 (Jan 2005): 141–148.https://doi.org/10.1104/pp.104.055145Dennis Francis The interface between the cell cycle and programmed cell death in higher plants: from division unto death, (Jan 2003): 143–181.https://doi.org/10.1016/S0065-2296(05)40004-XYoshihiro Katayama, Yoko Mashino, Nobuyuki Nishikubo, Kaori Yoshitomi, Ryo Funada, Shinya Kajita Immunohistochemical localization of enzymes related to lignin biosynthesis in the primary xylem of hybrid aspen, Journal of Wood Science 48, no.66 (Dec 2002): 457–466.https://doi.org/10.1007/BF00766640Christoph Ringli, Gunter Hauf, Beat Keller Hydrophobic Interactions of the Structural Protein GRP1.8 in the Cell Wall of Protoxylem Elements, Plant Physiology 125, no.22 (Feb 2001): 673–682.https://doi.org/10.1104/pp.125.2.673Ryo Funada Control of Wood Structure, (Jan 2000): 51–81.https://doi.org/10.1007/978-3-662-22300-0_3William C. Dickison Plant growth, development, and cellular organization, (Jan 2000): 3–I.https://doi.org/10.1016/B978-012215170-5/50002-9G. Paul Bolwell, Duncan Robertson Differentiation of Vascular Elements in Tissue Culture, (Jan 1999): 3–35.https://doi.org/10.1007/978-94-015-9253-6_1N. J. Chaffey, J. R. Barnett, P. W. Barlow Cortical microtubule involvement in bordered pit formation in secondary xylem vessel elements ofAesculus hippocastanum L. (Hippocastanaceae): A correlative study using electron microscopy and indirect immunofluorescence microscopy, Protoplasma 197, no.1-21-2 (Mar 1997): 64–75.https://doi.org/10.1007/BF01279885P. Matile The Vacuole and Cell Senescence, (Jan 1997): 87–112.https://doi.org/10.1016/S0065-2296(08)60149-4Nigel Chaffey Seeing the wood and the trees, Trends in Plant Science 2, no.11 (Jan 1997): 3–4.https://doi.org/10.1016/S1360-1385(97)82725-2Hiroo Fukuda XYLOGENESIS: INITIATION, PROGRESSION, AND CELL DEATH, Annual Review of Plant Physiology and Plant Molecular Biology 47, no.11 (Jun 1996): 299–325.https://doi.org/10.1146/annurev.arplant.47.1.299Alan M. Jones, Jeffery L. Dangl Logjam at the Styx: programmed cell death in plants, Trends in Plant Science 1, no.44 (Apr 1996): 114–119.https://doi.org/10.1016/S1360-1385(96)90005-9Daniel Harnden, Alan M. Jones Organ distribution of auxin-binding protein 1 in the etiolated maize seedling, Journal of Plant Growth Regulation 14, no.22 (Apr 1995): 109–113.https://doi.org/10.1007/BF00203122Kenneth S. Uhnak, Alison W. Roberts Microtubule rearrangements accompanying dedifferentiation in mesophyll cultures ofZinnia elegans L., Protoplasma 189, no.1-21-2 (Mar 1995): 81–87.https://doi.org/10.1007/BF01280293Munetaka Sugiyama, Hiroo Fukuda Zinnia mesophyll culture system to study xylogenesis, (Jan 1995): 1017–1031.https://doi.org/10.1007/978-94-009-0103-2_55Munetaka Sugiyama, Hiroo Fukuda Zinnia mesophyll culture system to study xylogenesis, (Jan 1995): 91–105.https://doi.org/10.1007/978-94-011-0303-9_5C.H. Anthony Little, Richard P. Pharis Hormonal Control of Radial and Longitudinal Growth in the Tree Stem, (Jan 1995): 281–319.https://doi.org/10.1016/B978-012276460-8/50015-1Ryo Funada Microtubules and the Control of Wood Formation, (): 83–119.https://doi.org/10.1007/7089_2008_163
Referência(s)