The Analysis of Building Subsidence Prediction Based on Grey Model Combined with Radial Basis Neural Network
2011; Trans Tech Publications; Volume: 368-373; Linguagem: Inglês
10.4028/www.scientific.net/amr.368-373.2359
ISSN1662-8985
AutoresYan Bai, Qing Chang Ren, Fan Zeng,
Tópico(s)Grey System Theory Applications
ResumoIn this paper, a new prediction model named RBNN-GM(1,1) (Radial Basis Neural Network-Grey Model) model was constructed and used for the analysis of building subsidence prediction for the Palms Together Dagoba in Famen Temple in Shaanxi Province in China. The constructed model can make full use of the advantages of few samples and little information predicting in Grey Theory and swift and self-learning in RBNN. The prediction results show that the combined model is more effective than the common grey model. The proposed combined model for building subsidence prediction may offer scientific rationale for estimating whether the building transmutation exceeds the criterion and provide reference for taking the corresponding safety measures.
Referência(s)