A Technique for Solving Two-Dimensional Boundary Value Problems
1969; Society for Industrial and Applied Mathematics; Volume: 17; Issue: 6 Linguagem: Inglês
10.1137/0117095
ISSN1095-712X
AutoresJ. Bebernes, Russell Wilhelmsen,
Tópico(s)Differential Equations and Numerical Methods
ResumoPrevious article Next article A Technique for Solving Two-Dimensional Boundary Value ProblemsJ. W. Bebernes and Russell WilhelmsenJ. W. Bebernes and Russell Wilhelmsenhttps://doi.org/10.1137/0117095PDFBibTexSections ToolsAdd to favoritesExport CitationTrack CitationsEmail SectionsAbout[1] Lloyd Jackson, Subfunctions and second-order ordinary differential inequalities, Advances in Math., 2 (1968), 307–363 (1968) 10.1016/0001-8708(68)90022-4 MR0229896 (37:5462) 0197.06401 CrossrefISIGoogle Scholar[2] Keith W. Schrader, Existence theorems for second order boundary value problems, J. Differential Equations, 5 (1969), 572–584 10.1016/0022-0396(69)90094-1 MR0239175 (39:532) 0172.11302 CrossrefISIGoogle Scholar[3] J. W. Bebernes and , Robert Gaines, A generalized two-point boundary value problem, Proc. Amer. Math. Soc., 19 (1968), 749–754 MR0226098 (37:1688) 0162.11602 CrossrefISIGoogle Scholar[4] R. Wilhelmsen, A nonlinear boundary value problem, Bull. Amer. Math. Soc., 73 (1967), 920–921 MR0218634 (36:1718) 0178.09204 CrossrefISIGoogle Scholar[5] Klaus Schmitt, Boundary value problems for non-linear second order differential equations, Monatsh. Math., 72 (1968), 347–354 10.1007/BF01302169 MR0230969 (37:6526) 0162.11502 CrossrefISIGoogle Scholar[6] Ju. A. Klokov, A boundary-value problem with a condition at infinity for a second-order ordinary differential equation, Uspehi Mat. Nauk, 17 (1962), 145–149 MR0143987 (26:1535) 0116.29003 Google Scholar[7] C. Corduneanu, Problèmes aux limites non-linéaires sur un demi-axe, Bul. Inst. Politehn. Iaşi (N.S.), 11 (15) (1965), 29–34 MR0197853 (33:6013) 0156.09802 Google Scholar[8] Paul B. Bailey, , Lawrence F. Shampine and , Paul E. Waltman, Nonlinear two point boundary value problems, Mathematics in Science and Engineering, Vol. 44, Academic Press, New York, 1968xiv+171 MR0230967 (37:6524) 0169.10502 Google Scholar[9] Philip Hartman, Ordinary differential equations, John Wiley & Sons Inc., New York, 1964xiv+612 MR0171038 (30:1270) 0125.32102 Google Scholar[10] R. L. Moore, Foundations of point set theory, Revised edition. American Mathematical Society Colloquium Publications, Vol. XIII, American Mathematical Society, Providence, R.I., 1962xi+419 MR0150722 (27:709) 0192.28901 Google Scholar Previous article Next article FiguresRelatedReferencesCited byDetails A Correction and an Extension of Stampacchia’s Work on the Geometric BVPAdvanced Nonlinear Studies, Vol. 14, No. 4 Cross Ref Multipoint Boundary Value Problems for a Second-Order Ordinary Differential EquationJournal of Mathematical Analysis and Applications, Vol. 236, No. 2 Cross Ref Nonlinear periodic boundary value problem for a second order ordinary differential equationNonlinear Analysis: Theory, Methods & Applications, Vol. 32, No. 7 Cross Ref Nonlinear Fourth-Order Two-Point Boundary Value ProblemsRocky Mountain Journal of Mathematics, Vol. 25, No. 2 Cross Ref On the Sturm-Liouville-type boundary value problemJournal of Mathematical Analysis and Applications, Vol. 108, No. 1 Cross Ref Ordinary differential equations with nonlinear boundary conditionsJournal of Differential Equations, Vol. 26, No. 2 Cross Ref BIBLIOGRAPHY Cross Ref Geometric Existence Proofs for Nonlinear Boundary Value ProblemsHerbert W. Hethcote18 July 2006 | SIAM Review, Vol. 14, No. 1AbstractPDF (749 KB)A remark concerning a boundary value problemJournal of Differential Equations, Vol. 10, No. 3 Cross Ref A Variation of the Topological Method of WażewskiLloyd K. Jackson and Gene Klaasen12 July 2006 | SIAM Journal on Applied Mathematics, Vol. 20, No. 1AbstractPDF (782 KB)A priori bounds for boundary sets1 January 1971 | Proceedings of the American Mathematical Society, Vol. 29, No. 2 Cross Ref A general boundary value problem techniqueJournal of Differential Equations, Vol. 8, No. 3 Cross Ref Volume 17, Issue 6| 1969SIAM Journal on Applied Mathematics History Submitted:03 September 1968Published online:17 February 2012 InformationCopyright © 1969 © Society for Industrial and Applied MathematicsPDF Download Article & Publication DataArticle DOI:10.1137/0117095Article page range:pp. 1060-1064ISSN (print):0036-1399ISSN (online):1095-712XPublisher:Society for Industrial and Applied Mathematics
Referência(s)