Factors That Determine the Severity of Experimental Myasthenia Gravisa a
1998; Wiley; Volume: 841; Issue: 1 Linguagem: Inglês
10.1111/j.1749-6632.1998.tb10935.x
ISSN1749-6632
AutoresDaniel B. Drachman, Kevin R. McIntosh, Bingzhi Yang,
Tópico(s)Myasthenia Gravis and Thymoma
ResumoAnnals of the New York Academy of SciencesVolume 841, Issue 1 p. 262-282 Factors That Determine the Severity of Experimental Myasthenia Gravisaa DANIEL B. DRACHMAN, DANIEL B. DRACHMAN Neuromuscular Unit; Department of Neurology; The Johns Hopkins University School of Medicine; Baltimore, Maryland 21287–7519Search for more papers by this authorKEVIN R. McINTOSH, KEVIN R. McINTOSH Neuromuscular Unit; Department of Neurology; The Johns Hopkins University School of Medicine; Baltimore, Maryland 21287–7519 Present affiliation: Osiris Therapeutics, Incorporated, Baltimore, Maryland 21231.Search for more papers by this authorBINGZHI YANG, BINGZHI YANG Neuromuscular Unit; Department of Neurology; The Johns Hopkins University School of Medicine; Baltimore, Maryland 21287–7519Search for more papers by this author DANIEL B. DRACHMAN, DANIEL B. DRACHMAN Neuromuscular Unit; Department of Neurology; The Johns Hopkins University School of Medicine; Baltimore, Maryland 21287–7519Search for more papers by this authorKEVIN R. McINTOSH, KEVIN R. McINTOSH Neuromuscular Unit; Department of Neurology; The Johns Hopkins University School of Medicine; Baltimore, Maryland 21287–7519 Present affiliation: Osiris Therapeutics, Incorporated, Baltimore, Maryland 21231.Search for more papers by this authorBINGZHI YANG, BINGZHI YANG Neuromuscular Unit; Department of Neurology; The Johns Hopkins University School of Medicine; Baltimore, Maryland 21287–7519Search for more papers by this author First published: 07 February 2006 https://doi.org/10.1111/j.1749-6632.1998.tb10935.xCitations: 14 a This work was supported in part by a grant from the NIH (No. 5T32NS07368), grants from the Muscular Dystrophy Association, and gifts from the Ann and Donald Brown Family Foundation and the Eleanor Denmead Ingram Foundation. Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat REFERENCES 1 Fuchs, S., D. Neva, R. Tarrab-Hazdai & F.Yaar. 1976. Strain differences in the autoimmune response of mice to acetylcholine receptors. Nature 263: 329–330. 2 Christadoss, P., J. M. Lindstrom, R. W. Melvold & N. Talal. 1985. Mutation at I-A beta chain prevents experimental autoimmune myasthenia gravis. Immunogenetics 21: 33–38. 3 Bellone, M., N. Ostlie S. Lei, X-D. Wu & B. M. Conti-Tronconi, 1991. The I-Abm12 mutation, which confers resistance to experimental myasthenia gravis, drastically affects the epitope repertoire of murine CD4+ cells sensitized to nicotinic acetylcholine receptor. J. Immunol. 147: 1484–1491. 4 Infante, A. J., P. A. Thompson, K. A. Krolick & K. A. Wall. 1991. Determinant selection in murine experimental autoimmune myasthenia gravis: effect of the bm12 mutation on T cell recognition of acetylcholine receptor epitopes. J. Immunol. 146: 2977–2982. 5 McIntyre, K. & J. Seidman. 1984. Nucleotide sequence of mutant I-A β bm12 gene is evidence for genetic exchange between mouse immune response genes. Nature 308: 551–553. 6 Bellone, M., N. Ostlie, S. Lei & B. M. Conti-Tronconi. 1991. Experimental myasthenia gravis in congenic mice: sequence mapping and H-2 restriction of T helper epitopes on the α subunits of Torpedo californica and murine acetylcholine receptors. Eur. J. Immunol. 21: 2303–2310. 7 Christadoss, P., V. A. Lennon, C. J. Krco, E. H. Lambert & C. S. David. 1981. Genetic control of autoimmunity to acetylcholine receptors: role of Ia molecules. Ann. N.Y. Acad. Sci. 377: 258–277. 8 Karachunski, P. I., N. Ostlie, M. Bellone, A. J. Infante & B. M. Conti-Tronconi. 1995. Mechanisms by which the I-Abm12 mutation influences susceptibility to experimental myasthenia gravis: a study in homozygous and heterozygous mice. Scand. J. Immunol. 42: 215–225. 9 Infante, A. J., H. Levcovitz, V. Gordon, K. A. Wall, P. A. Thompson & K. A. Krolick. 1992. Preferential use of a T cell receptor Vβ gene by acetylcholine receptor reactive T cells from myasthenia gravis-susceptible mice. J. Immunol. 148: 3385–3390. 10 Infante, A. J., J. Faler, S. Chang, P Currier, P. Thompson, K. Krolick, K. Zborowski & E. Kraig. 1993. T-cell receptor expression in murine myasthenia gravis. Ann. N.Y. Acad. Sci. 681: 292–294. 11 Drachman, D. B., 1994. Myasthenia gravis. N. Engl. J. Med. 330: 1797–1810. 12 Drachman, D. B., R. N. Adams, E. F. Stanley & A. Pestronk. 1980. Mechanisms of acetylcholine receptor loss in myasthenia gravis. J. Neurol. Neurosurg. Psychiatry 43: 601–610. 13 Drachman, D. B., R. N. Adams, L. F. Josifek & S. G. Self. 1982. Functional activities of autoantibodies to acetylcholine receptors and the clinical severity of myasthenia gravis. N. Engl. J. Med. 307: 769–775. 14 Engel, A. G., & K. Arahata. 1987. The membrane attack complex of complement at the endplate in myasthenia gravis. Ann. N.Y. Acad. Sci. 505: 326–332. 15 Osman, G. E., M. Toda, O. Kanagawa & L. E. Hood. 1993. Characterization of the T cell receptor repertoire causing collagen arthritis in mice. J. Exp. Med. 177: 387–395. 16 Shenoy, M., M. Oshima, M. Z. Atassi & P. Christadoss. 1993. Suppression of experimental autoimmune myasthenia gravis by epitope-specific neonatal tolerance to synthetic region α146-162 of acetylcholine receptor. Clin. Immunol. Immunopathol. 66: 230–238. 17 Lodge, P. A., M. Allegretta, L. Steinman & S. Sriram. 1994. Myelin basic protein peptide specificity and T cell receptor gene usage of HPRT mutant T cell clones in patients with multiple sclerosis. Ann. Neurol. 36: 734–740. 18 Kappler, J. W., B. Skidmore, J. White & P. Marrack. 1981. Antigen-inducible, H-2-restricted, interleukin-2-producing T cell hybridomas: lack of independent antigen and H-2 recognition. J. Exp. Med. 153: 1198–1214. 19 Born, W., J. White, R. O'Brien & R. Kubo. 1988. Development of T cell receptor expression: studies using T cell hybridomas. Immunol. Res. 7: 279–291. 20 Kruisbeek, A.M. 1994. Production of mouse T cell hybridomas. In Current Protocols in Immunology. Chapter 3.14, p. 3.14.1–3.14.11. Wiley. New York. 21 Yokoi, T., B. Mulac-Jericevic, J. Kurisaki & M. Z. Atassi. 1987. T lymphocyte recognition of acetylcholine receptor: localization of the full T cell recognition profile on the extracellular part of the α chain of Torpedo californica acetylcholine receptor. Eur. J. Immunol. 17: 1697–1702. 22 Chomczynski, P. & N. Sacchi. 1987. Single step method of RNA isolation by acid guanidinium-thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162: 156–159. 23 Yang, B., R. Yolken & R. Viscidi. 1993. Quantitative polymerase chain reaction by monitoring enzymatic activity of DNA polymerase. Anal. Biochem. 208: 110–116. 24 Sanger, F., S. Nicklen & A. R. Coulson. 1977. DNA sequencing with chain terminating inhibitors. Proc. Natl. Acad. Sci. U.S.A. 74: 5463–5466. 25 Rock, E. P., P. R. Sibbald, M. M. Davis & Y. Chien. 1994. CDR3 length in antigen-specific immune receptors. J. Exp. Med. 179: 323–328. 26 McIntosh, K. R., & D. B. Drachman. 1992. Tolerance to acetylcholine receptor induced by AChR-coupled syngeneic cells. J. Neuroimmunol. 38: 75. 27 Okumura, S., K. McIntosh & D. B. Drachman. 1994. Oral administration of acetylcholine receptor: effects on experimental myasthenia gravis. Ann. Neurol. 36: 704–713. 28 Pierce, J. L., K. A. Zborowski, E. Kraig & A. J. Infante. 1994. Highly conserved TCR β chain CDR3 sequences among immunodominant acetylcholine receptor-reactive T cells in murine myasthenia gravis. Int. Immunol. 6: 775–783. 29 Kraig, E., J. L. Pierce, K. Z. Clarkin, N. E. Standifer, P. Currier, K. A. Wall & A. J. Infante. 1996. Restricted T cell receptor repertoire for acetylcholine receptor in murine myasthenia gravis. J. Neuroimmunol. 71: 87–95. 30 Wu, B., M. Shenoy, E. Goluszko, R. Kaul & P. Christadoss. 1995. TCR gene usage in experimental autoimmune myasthenia gravis pathogenesis usage of multiple TCRBV. J. Immunol. 154: 3603–3610. 31 Jorgensen, J. L., U. Esser, S. Fazekas, B. Groth, P. A. Reay & M. M. Davis. 1992. Mapping T-cell receptor-peptide contacts by variant peptide immunization of single-chain transgenics. Nature 355: 224–230. 32 Chien, Y. & M. M. Davis. 1993. HOW α/β T cell receptors “see” peptide/MHC complexes. Immunol. Today 14: 597–602. 33 Wall, K. A., J. HU, P. Currier, S. Southwood A. Sette & A. J. Infante. 1994. A disease-related epitope of Torpedo acetylcholine receptor: residues involved in I-Ab binding, self discrimination, and TCR antagonism. J. Immunol. 152: 4526–4536. 34 Oshima, M. & M. Z. Atassi. 1995. Effects of amino acid substitutions within the region 62–76 of I-Abβ on binding with and antigen presentation of Torpedo acetylcholine receptor α-chain peptide 146–162. J. Immunol. 154: 5245. 35 Krco, C. J., C. S. Davis & V. A. Lennon. 1992. Mouse T lymphocyte response to acetylcholine receptor determined by T cell receptor for antigen Vβ gene products recognizing Mls-a. J. Immunol. 147: 3303–3305. 36 Thompson, P. A., R. McAtee, A. J. Infante, P. Currier, W. Beninati & K. A. Krolick. 1994. Vβ-specific immunotoxin selectively kills acetylcholine receptor-reactive lymphocytes from mice with experimental autoimmune myasthenia gravis. Int. Immunol. 6: 1807–1815. 37 Yang, B., K. R. McIntosh & D. B. Drachman. 1998. HOW subtle differences in MHC class II affect the severity of experimental myasthenia gravis. Clin. Immunol. Immunopathol. 86: 45–58. 38 Dau, P. C., J. M. Lindstrom, C. K. Cassel & E. C. Clark. 1979. Plasmapheresis in myasthenia gravis and polymyositis. In Plasmapheresis and the Immunobiology of Myasthenia Gravis, p. 229–247. 39 Mosmann, T. R., & R. L. Coffman. 1989. Th1 and Th2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu. Rev. Immunol. 7: 145–173. 40 Nicholson, L. B., J. M. Greer, R. A. Sobel. M. B. Lees & V. K. Kuchroo. 1995. An altered peptide ligand mediates immune deviation and prevents autoimmune encephalomyelitis. Immunity 3: 397–405. 41 Windhagen, A., C. Scholz, P. Hollsberg, H. Fukaura, A. Sette & D. A. Hafler. 1995. Modulation of cytokine patterns of human autoreactive T cell clones by a single amino acid substitution of their peptide ligand. Immunity 2: 373–380. 42 Chaturvedi, P., Q. Yu, S. Southwood, A. Sette & B. Singh. 1996. Peptide analogs with different affinities for MHC alter the cytokine profile of T helper cells. Int. Immunol. 8: 745–755. 43 Palmer, M. & E. Sercarz. 1989. Determinant preferences in the relationship between T and B cells specific for lysozyme. In The Immune Response to Structurally Defined Proteins: The Lysozyme Model, p. 285. Adenine Press. Boston. 44 Bellone, M., P. I. Karachunski, N. Ostlie, S. Lei & B. M. Conti-Tronconi. 1994. Preferential pairing of T and B cells for production of antibodies without covalent association of T and B epitopes. Eur. J. Immunol. 24: 799–804. 45 Wauben, M. H., M., A. C. W. E. Hoedemaekers, Y. M. F. Graus, J. P. A. Wagenaar, W. Van Eden & M. H. De Baets. 1996. Inhibition of experimental autoimmune myasthenia gravis by major histocompatibility complex class 11 competitor peptides results not only in a suppressed, but also in an altered immune response. Eur. J. Immunol. 26: 2866–2875. 46 McIntosh, K. R., P.S. Linsley, P. A. Bacha & D. B. Drachman. 1997. Immunotherapy of experimental autoimmune myasthenia gravis: selective effects of CTLA4Ig and synergistic combination with an IL2-diphtheria toxin fusion protein. Submitted. 47 von Herrath, M. G., & M. B. Oldstone. 1996. Virus-induced autoimmune disease. Curr. Opin. Immunol. 8: 878–885. 48 Berman, P. W., J. Patrick, S. Heinemann, F. G. Klier & J. H. Steinbach. 1981. Factors affecting the susceptibility of different strains of mice to experimental myasthenia gravis. Ann. N.Y. Acad. Sci. 377: 237–257. 49 Yeh, T-M. & K. A. Krolick. 1990. T cells reactive with a small synthetic peptide of the acetylcholine receptor can provide help for a clonotypically heterogeneous antibody response and subsequently impaired muscle function. J. Immunol. 144: 1654–1660. 50 Wang, K., J. L. Klotz, G. Kiser, G. Bristol, E. Hays, E. Lai, E. Gese, M. Kronenberg & L. Hood. 1994. Organization of the V gene segments in mouse T cell antigen receptor α/δ locus. Genomics 20: 419–428. 51 Koop, B. F., L. Rowen, K. Wang, C. L. Kuo, D. Seto, J. A. Lenstra, S. Howard, W. Shan, P. Deshpande & L. Hood. 1994. The human T-cell receptor TCRAC/TCRDC (Cα/Cδ) region: organization, sequence, and evolution of 97.6 kb of DNA. Genomics 19: 478–493. 52 Wilson, R. K., E. Lai, P. Concannon, R. K. Barth & L. E. Hood. 1988. Structure, organization, and polymorphism of murine and human T-cell receptor α and δ chain gene families. Immunol. Rev. 101: 149–172. 53 Pannetier, C., M. Cochet, S. Darche, A. Casrouge, M. Zoller & P. Kourilsky. 1993. The sizes of the CDR3 hypervariable regions of the murine T cell receptor β chains vary as a function of the recombined germ-line segments. Proc. Natl. Acad. Sci. U.S.A. 90: 4319–4323. 54 Abbas, A. K., A. H. Lichtman & J. S. Pober. 1994. Cellular and Molecular Immunology. Second edition. Saunders. Philadelphia. Citing Literature Volume841, Issue1MYASTHENIA GRAVIS AND RELATED DISEASES: DISORDERS OF THE NEUROMUSCULAR JUNCTIONMay 1998Pages 262-282 ReferencesRelatedInformation
Referência(s)