Specificity versus Redundancy of Melanocortins in Nerve Regeneration
1994; Wiley; Volume: 739; Issue: 1 Linguagem: Inglês
10.1111/j.1749-6632.1994.tb19807.x
ISSN1749-6632
AutoresFrancis J. Antonawich, Efrain C. Azmitia, H Kenneth Kramer, Fleur L. Strand,
Tópico(s)Nerve injury and regeneration
ResumoAnnals of the New York Academy of SciencesVolume 739, Issue 1 p. 60-73 Specificity versus Redundancy of Melanocortins in Nerve Regeneration FRANCIS J. ANTONAWICH, FRANCIS J. ANTONAWICH Department of Biology and Center for Neural Science New York University New York, New York 10003Search for more papers by this authorEFRAIN C. AZMITIA, EFRAIN C. AZMITIA Department of Biology and Center for Neural Science New York University New York, New York 10003Search for more papers by this authorH. KENNETH KRAMER, H. KENNETH KRAMER Department of Biology and Center for Neural Science New York University New York, New York 10003Search for more papers by this authorFLEUR L. STRAND, Corresponding Author FLEUR L. STRAND Department of Biology and Center for Neural Science New York University New York, New York 10003aAddress for correspondence: Fleur L. Strand, Carroll and Milton Petrie Professor of Biology, 1009 Main Building, New York University, Washington Square East, New York, NY 10003.Search for more papers by this author FRANCIS J. ANTONAWICH, FRANCIS J. ANTONAWICH Department of Biology and Center for Neural Science New York University New York, New York 10003Search for more papers by this authorEFRAIN C. AZMITIA, EFRAIN C. AZMITIA Department of Biology and Center for Neural Science New York University New York, New York 10003Search for more papers by this authorH. KENNETH KRAMER, H. KENNETH KRAMER Department of Biology and Center for Neural Science New York University New York, New York 10003Search for more papers by this authorFLEUR L. STRAND, Corresponding Author FLEUR L. STRAND Department of Biology and Center for Neural Science New York University New York, New York 10003aAddress for correspondence: Fleur L. Strand, Carroll and Milton Petrie Professor of Biology, 1009 Main Building, New York University, Washington Square East, New York, NY 10003.Search for more papers by this author First published: October 1994 https://doi.org/10.1111/j.1749-6632.1994.tb19807.xCitations: 14AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat References 1 Strand, F. L. & T. T. Kung 1980. ACTH accelerates recovery of neuromuscular function following crushing of peripheral nerve. Peptides. 1: 135–138. 10.1016/0196-9781(80)90077-7 CASPubMedWeb of Science®Google Scholar 2 Bijlsma, W. A., F. G. I. Jennekens, P. Schotman & W. H. Gispen 1981. Effects of corticotropin (ACTH) on recovery of sensorimotor function in the rat: Structureactivity study. Eur. J. Pharmacol. 76: 73–79. 10.1016/0014-2999(81)90011-X CASPubMedWeb of Science®Google Scholar 3 Van Der Neut, R., P. Bar, P. Sodaar & W. H. Gispen 1988. Trophic influence of alpha-MSH and ACTH 4–10 on neuronal growth in vitro. Peptides. 9: 1015–1020. 10.1016/0196-9781(88)90082-4 PubMedWeb of Science®Google Scholar 4 Strand, F. L., K. J. Rose, J. A. King, A. Segarra & L. A. Zuccarelli 1989. ACTH modulation of nerve development and regeneration. Prog. Neurobiol. 33: 45–85. 10.1016/0301-0082(89)90035-X CASPubMedWeb of Science®Google Scholar 5 Strand, F. L., K. J. Rose, L. A. Zuccarelly, J. Kume, S. E. Alves, F. J. Antonawich & L. Y. Garrett 1991. Neuropeptide hormones as neurotrophic factors. Physiol. Rev. 71(4): 1017–1037. CASPubMedWeb of Science®Google Scholar 6 Strand, F.L., S. J. Lee, T. S. Lee, L. A. Zuccarelli, F. J. Antonawich, J. Kume & K. A. Williams 1993. Non-corticotropic ACTH peptides modulate nerve development and regeneration. Rev. Neurosci. 4(4): 321–363. 10.1515/REVNEURO.1993.4.4.321 PubMedGoogle Scholar 7 Bär, P. R. D., L. H. Schrama & W. H. Gispen 1990. Neurotrophic effects of ACTH/MSH- like peptides in the peripheral nervous system. In Neuropeptides: Basics and Perspectives. D. Wied, Ed.: 175–211. Elsevier Science Publishers. New York . Google Scholar 8 Azmitia, E. C. & E. R. De Kloet 1987. ACTH neuropeptide stimulation of serotonergic neuronal maturation in tissue culture: Modulation by hippocampal cells. Prog. Brain Res. 72: 311–318. 10.1016/S0079-6123(08)60217-4 CASPubMedWeb of Science®Google Scholar 9 Richter-Landsberg, C., I. Bruns & H. Flohr 1987. ACTH neuropeptides influence development and differentiation of embryonic rat cells in culture. Neurosci. Res. Commun. 1: 153–162. CASGoogle Scholar 10 Lee, S. J., T. S. Lee & F. L. Strand 1991. Local control of neurite outgrowth of doisal root ganglia and spinal cord neurons by ACTH analog Org 2766, BIM 22015 and NGF. Soc. Neurosci. Abstr. 17: 598-12. Google Scholar 11 Gispen, W. H. & H. Zwiers 1985. Behavioral and neurochemical effects of ACTH. In Neurochemical Systems, Handbook of Neurochemistry. A. Lajtha, Ed.: 177–195. Plenum Press. New York . Google Scholar 12 Beckwith, B. E. & A. J. Kastin 1987. Central action of melanocyte-stimulating hormone (MSH). In Peptide Hormones: Effects and Mechanisms of Action. A. Negro-Vilar & P.M. Conn, Eds. Vol. I: 196–218. CRC. Boca Raton , FL . Google Scholar 13 Isaacson, R. & A. Poplawsky 1983. An ACTH 4–9 analog (ORG 2766) speeds recovery from septal hyperemotionality in the rat. Behav. Neural Biol. 39: 52–59. 10.1016/S0163-1047(83)90620-9 CASPubMedWeb of Science®Google Scholar 14 Isaacson, R. & A. Poplawsky 1985. ACTH 4–10 produces a transient decrease in septal hyperemotionality. Behav. Neural Biol. 43: 109–113. 10.1016/S0163-1047(85)91552-3 CASPubMedWeb of Science®Google Scholar 15 Nyakas, C., H. Veldhus & D. De Wied 1985. Beneficial effect of chronic treatment with ORG 2766 and α-MSH on impaired reversal learning of rats with bilateral lesions of their parafascicular area. Brain Res. Bull. 15: 257–265. 10.1016/0361-9230(85)90148-0 CASPubMedWeb of Science®Google Scholar 16 Igaraski, M., K. Ishikawa, M. Ishii & K. Schmidt 1985. Effect of ACTH(4–10) on equilibrium compensation after unilateral labyrinthectomy in the squirrel monkey. Eur. J. Pharmacol. 119: 239–242. 10.1016/0014-2999(85)90302-4 PubMedWeb of Science®Google Scholar 17 Hannigan, J. & R. Isaacson 1985. The effects of ORG 2766 on the performance of sham, neocortical and hippocampal-lesioned rats in a food search task. Pharmacol. Biochem. Behav. 23: 1019–1027. 10.1016/0091-3057(85)90109-1 CASPubMedWeb of Science®Google Scholar 18 Benelli, A., P. Zanoli, A. Botticelli & A. Bertolini 1988 [Nlc4,d-Phe7]α-MSH improves functional recovery in rats subjected to diencephalic hemisection. Eur. J. Pharmacol. 150: 211–219. 10.1016/0014-2999(88)90001-5 CASPubMedWeb of Science®Google Scholar 19 Luneburg, U. & H. Flohr 1988. Effects of melanocortins on vestibular compensation. In Progress in Brain Research. O. Pompeiano & J. Album, Eds 76: 421–429. Elsevier. Amsterdam . Web of Science®Google Scholar 20 Me Daniel, W. F., E. J. Davall & P. E. Walker 1989. ACTH 4–9 analog can retard spatial alternation learning in brain damaged and normal rats. Behav. Neural Biol. 52: 271–278. 10.1016/S0163-1047(89)90397-X PubMedWeb of Science®Google Scholar 21 Spruijt, B., N. Pitsikas, S. Algeri & W. Gispen 1990. Org 2766 improves performance of rats with unilateral lesions in the fimbria fornix in a spatial learning task. Brain Res. 527: 192–197. 10.1016/0006-8993(90)91137-6 CASPubMedWeb of Science®Google Scholar 22 Wolterink, G., E. Van Zanten, K. Kamsteeg, F. Radhakishun & J. Van Ree 1990. Functional recovery after destruction of dopamine systems in the nucleus accumbens of rats. II. Facilitation by the ACTH-(4–9) analog ORG 2766. Brain Res. 507: 101–108. 10.1016/0006-8993(90)90527-I CASPubMedWeb of Science®Google Scholar 23 Pitsikas, N., B. Spruijt, S. Algeri & W. Gispen 1990. The ACTH/MSH (4–9) analog Org 2766 improves retrieval of information after a fimbria fornix transection. Peptides. 11: 911–914. 10.1016/0196-9781(90)90008-S CASPubMedWeb of Science®Google Scholar 24 Pitsikas, N., B. Spruijt, M. Josephy, S. Algeri & W. Gispen 1991. Effect of Org 2766, an ACTH 4–9 analogue, on the recovery after bilateral transection of the fimbria fornix in the rat. Pharmacol. Biochem. Behav. 38: 931–934. 10.1016/0091-3057(91)90267-6 CASPubMedWeb of Science®Google Scholar 25 Vos, P. E., H. W. Steinbusch & J. M. Van Ree 1991. The ACTH (4–9) analog, Org 2766, facilitates reinnervation after destruction of the dopaminergic system in the rat nucleus accumbens: A quantitative immunohistochemical study. In Post-lesion plasticity of dopaminergic systems in the rat brain, Effects of the peptide Org 2766. P. E. Vos, Ed.: 67–87. Ph.D. thesis. Utrecht , the Netherlands . Google Scholar 26 Atella, M. J., S. W. Hoffman, M. P. Pilotte & D. G. Stein 1992. Effects of BIM 22015, an analog of ACTH 4–10, on functional recovery after frontal cortex injury. Behav. Neural Biol. 57: 157–166. 10.1016/0163-1047(92)90665-Q PubMedWeb of Science®Google Scholar 27 Antonawich, F. J., E. C. Azmitia & F. L. Strand 1993a. Rapid neurotrophic actions of an ACTH/MSH (4–9) analogue after nigrostriatal 6-OHDA lesioning. Peptides. 14: 1317–1324. 10.1016/0196-9781(93)90192-J PubMedWeb of Science®Google Scholar 28 Hefti, F., J. Hertikka & B. Knujel 1989. Function of neurotrophic factors in the adult and aging brain and their possible use in the treatment of neurodegenerative disease. Neurobiol. Aging. 10: 515. 10.1016/0197-4580(89)90118-8 CASPubMedWeb of Science®Google Scholar 29 De Wied, D. 1969. Effects of peptide hormones on behavior. In Frontiers in Neuroendocrinology. W. F. Ganong & L. Martini, Eds.: 97–140. Oxford University Press. London . Google Scholar 30 Banks, W. & A. Kastin 1985. Permeability of the blood-brain barrier to neuropeptides: The case for penetration. Psychoneuroendocrinology. 10: 385–399. 10.1016/0306-4530(85)90079-4 CASPubMedWeb of Science®Google Scholar 31 Banks, W., A. Kastin & E. Michals 1987. Tyr-MIF-1 and Met-enkephalin share a saturable blood-brain barrier transport system. Peptides. 8: 899–903. 10.1016/0196-9781(87)90078-7 CASPubMedWeb of Science®Google Scholar 32 Kastin, A., R. Olson, A. Schally & D. Coy 1979. CNS effects of peripherally administered brain peptides. Life Sci. 25: 401–414. 10.1016/0024-3205(79)90572-1 CASPubMedWeb of Science®Google Scholar 33 Rasmussen, S. I., W. A. Klee, K. D. Pettigrew & K. Ohno 1979. Entry of opioid peptides into the central nervous system. Science. 207: 84–86. PubMedWeb of Science®Google Scholar 34 Bergland, R. & R. Page 1978. Can the pituitary secrete directly to the brain? (affirmative anatomical evidence). Endocrinology. 102: 1325–1338. 10.1210/endo-102-5-1325 CASPubMedWeb of Science®Google Scholar 35 Wilson, J., S. Anderson, G. Snook & K. Llewellyn 1984. Quantification of the permeability of the blood CSF barrier to α-MSH in the rat. Peptides. 5: 681–685. 10.1016/0196-9781(84)90006-8 CASPubMedWeb of Science®Google Scholar 36 Shimura, T., S. Tabata, T. Ohnishi, T. Terasaki & A. Tsuji 1991. Transport mechanism of a new behaviorally highly potent adrenocorticotropic hormone (ACTH) analog, ebiratide, through the blood-brain barrier. J. Pharmacol. Exper. Ther. 258(2): 459–465. PubMedWeb of Science®Google Scholar 37 Pelletier, G. & R. Leclerc 1979. Immunohistochemical localization of adrenocorticotropin in the rat brain. Endocrinology. 104: 1426–1433. 10.1210/endo-104-5-1426 CASPubMedWeb of Science®Google Scholar 38 O'Donohue, T. & D. Dorsa 1982. The opiomelanotropinergic neuronal and endocrine system. Peptides. 3: 353–395. 10.1016/0196-9781(82)90098-5 CASPubMedWeb of Science®Google Scholar 39 Kiss, J., E. Mezey, M. Cassell, T. Williams, G. Mueller, T. O'donohue & M. Palkovitz 1985. Topographical distribution of proopiomelanocortin-derived peptides (ACTH/β-End/α-MSH) in the rat median eminence. Brain Res. 329: 169–176. 10.1016/0006-8993(85)90522-0 CASPubMedWeb of Science®Google Scholar 40 Palkovits, M., E. Meyey & R. Eskay 1987. Proopiomelanocortin-derived peptides (ACTH/p-endorphin/α-MSH) in brain stem baroreceptor areas of the rat. Brain Res. 436: 323–328. 10.1016/0006-8993(87)91676-3 CASPubMedWeb of Science®Google Scholar 41 Liang, C., G. Kozlowski, S. Joseph & D. German 1992. ACTH 1–39 inputs to mesocorticolimbic dopaminergic neurons: Light and electron microscopic examination. Neurosci. Lett. 146: 79–83. 10.1016/0304-3940(92)90177-9 PubMedWeb of Science®Google Scholar 42 Arai, H., T. Moroji, K. Kosaka & R. Iizuka 1986. Extrahypophyseal distribution of a-melanocyte stimulating hormone (al-MSH)-like immunoreactivity in post-mortem brains from normal subjects and Alzheimer-type dementia patients. Brain Res. 377: 305–310. 10.1016/0006-8993(86)90873-5 CASPubMedWeb of Science®Google Scholar 43 Lee, S. J., C. J. Aoki & F. L. Strand 1992. Immunocytochemical localization of ACTH 4–10 in the rat brain. Soc. Neurosci. Abstr. 18: 121–2. Web of Science®Google Scholar 44 Antonawich, F. J., S. J. Lee & F. L. Strand 1993b. Immunocytochemical localization of ACTH 4–10 in the adult rat brain after 6-OHDA lesioning of the substantia nigra. Soc. Neurosci. Abstr. 19: 709-8. Google Scholar 45 Rose, K. J. & F. L. Strand 1988. Mammalian neuromuscular development accelerated with early but slowed with late gestational administration of ACTH peptide. Synapse. 2: 200–204. 10.1002/syn.890020305 CASPubMedWeb of Science®Google Scholar 46 Saint-Come, C., G. R. Acker & F. L. Strand 1982. Peptide influences on the development and regeneration of motor performance. Peptides. 3: 439–449. 10.1016/0196-9781(82)90105-X CASPubMedWeb of Science®Google Scholar 47 Saint-Come, C., G. R. Acker & F. L. Strand 1985. Development and regeneration of motor systems under the influence of ACTH peptides. Psychoneuroendocrinology. 10: 445–459. 10.1016/0306-4530(85)90084-8 CASPubMedWeb of Science®Google Scholar 48 Antonawich, F. J. & F. L. Strand 1990. Alterations in rotational and open-field behavior following 6-OHDA lesioning of the substantia nigra and administration of Org 2766. Soc. Neurosci. Abstr. 16: 479-12. Google Scholar 49 Bijlsma, W. A., F. G. I. Jennekens, W. H. Gispen & D. de Wied 1983. The enhanced recovery of sensorimotor function in rats is related to the melanotropic moiety of ACTH/MSH neuropeptides. Eur. J. Pharmacol. 92: 231–236. 10.1016/0014-2999(83)90291-1 CASPubMedWeb of Science®Google Scholar 50 Wolterink, G. 1990. The ACTH 4–9 analog Org 2766 facilitates reinnervation of nucleus accumbens tissue after 6-hydroxydopamine. In ACTH Neuropeptides and Brain Plasticity: Behavioral and Neurotrophic Aspects. G. Wolterink, Ed.: 177–188. Ph.D. thesis. Utrecht , the Netherlands . Google Scholar 51 Gispen, W. H., V. M. Wiegant, H. M. Greven & D. de Wied 1975. The induction of excessive grooming in the rat by intraventricular application of peptides derived from ACTH. Structure-activity studies. Life Sci. 17: 654–660. Google Scholar 52 Spruijt, B. M., P. N. E. de Graan, A. Eberle & W. H. Gispen 1985. Comparison of structural requirements of a-MSH for inducing excessive grooming and melanophore dispersion. Peptides. 6: 1185–1191. 10.1016/0196-9781(85)90448-6 CASPubMedWeb of Science®Google Scholar 53 Pellegrini-Giampietro, D., G. Cherici, M. Alesiani, V. Carla & F. Moroni 1990. Excitatory amino acid release and free radical formation may cooperate in the genesis of ischemia-induced neuronal death. J. Neurosci. 10(3): 1035–1041. 10.1523/JNEUROSCI.10-03-01035.1990 CASPubMedWeb of Science®Google Scholar 54 Garthwaite, J. 1990. NMDA receptors, neuronal development and neurodegeneration. In The NMDA Receptor. J. C. Watkins & G. L. Collingridge, Eds.: 187–205. Oxford University Press. Oxford , United Kingdom . Google Scholar 55 Krebs, M., F. Trovero, M. Desban, C. Gauchy, J. Glowinski & M. Kemel 1991. Distinct presynaptic regulation of dopamine release through NMDA receptors in striosome and matrix-enriched areas of the rat striatum. J. Neurosci. 11(5): 1256–1262. CASPubMedWeb of Science®Google Scholar 56 Mereu, G., E. Costa, D. Armstrong & S. Vicini 1991. Glutamate receptor subtypes mediate excitatory synaptic currents of dopamine neurons in midbrain slices. J. Neurosci. 11(5): 1359–1366. PubMedWeb of Science®Google Scholar 57 Robledo, P. & J. Feger 1990. Excitatory influence of rat subthalamic nucleus to substantia nigra pars reticulata and the pallidal complex: Electrophysiological data. Brain Res. 518: 47–54. 10.1016/0006-8993(90)90952-8 CASPubMedWeb of Science®Google Scholar 58 Gariano, R. & P. Groves 1988. Burst firing induced in midbrain dopamine neurons by stimulation of the medial prefrontal and anterior cingulate cortices. Brain Res. 462: 194–198. 10.1016/0006-8993(88)90606-3 CASPubMedWeb of Science®Google Scholar 59 Spruijt, B. 1992. The ACTH 4–9 analog Org 2766 modulates NMDA receptor activity. Soc. Neurosci. Abstr. 18: 897. Google Scholar 60 Trifiletti, R. & M. Pranzatelli 1992 ACTH binds to [3H]MK-801 labelled rat hippocampal NMDA receptors. Eur. J. Pharmacol. (Mol. Pharmacol. Section) 226: 377–379. 10.1016/0922-4106(92)90057-3 CASPubMedWeb of Science®Google Scholar 61 Kendall, D. A., B. S. Mcewen & S. J. Enna 1982 The influence of ACTH and corticosterone on [3H]GABA receptor binding in rat brain. Brain Res. 236: 365–369. 10.1016/0006-8993(82)90721-1 CASPubMedWeb of Science®Google Scholar 62 Chiriboga, C. A., M. R. Pranzatelli & D. C. de Vivo 1989 Chronic ACTH treatment increases striatal dopamine D2 receptor binding in developing rat brain. Brain Dev. 11: 197–201. 10.1016/S0387-7604(89)80099-3 CASPubMedWeb of Science®Google Scholar 63 Pranzatelli, M. R. 1989. In vivo and in vitro effects of adrenocorticotropic hormone on serotonin receptors in neonatal rat brain. Dev. Pharmacol. Ther. 12: 49–51. CASPubMedWeb of Science®Google Scholar 64 Pranzatelli, M. R. & B. Eng 1989 Chronic ACTH treatment: Influence of 5-HT2 receptors and behavioral supersensitivity induced by 5, 7-dihydroxytryptamine lesions. Peptides 10: 5–8. 10.1016/0196-9781(89)90066-1 CASPubMedWeb of Science®Google Scholar 65 Akil, H., W. A. Hewlett, J. D. Barchas & C. H. Li 1980 Binding of 3H-β-endorphin to rat brain membranes: Characterization of opiate properties and interaction with ACTH. Eur. J. Pharmacol. 64: 1–9. 10.1016/0014-2999(80)90363-5 CASPubMedWeb of Science®Google Scholar 66 Braestrup, C. & R. F. Squires 1978. Pharmacological characteristics of benzodiazepine receptors in the brain. Eur. J. Pharmacol. 48: 263–267. 10.1016/0014-2999(78)90085-7 CASPubMedWeb of Science®Google Scholar 67 Czlonkowski, A., V. Hollt & A. Herz 1978. Binding of opiates and endogenous opioid peptides to neuroleptic sites in the corpus striatum. Life Sci. 22: 953–956. 10.1016/0024-3205(78)90360-0 CASPubMedWeb of Science®Google Scholar 68 Florijn, W. J., T. De Boer, A. D. M. Tonnaer, J. W. Van Nispen & D. H. G. Versteeg 1991 ACTH/MSH-like peptides inhibit the binding of dopaminergic D2 receptor in vitro. Eur. J. Pharmacol. 207: 43–48. 10.1016/S0922-4106(05)80036-7 CASPubMedWeb of Science®Google Scholar 69 Gispen, W. H., J. Buitelaar, V. M. Wiegant, L. Terenius & D. de Wied 1976. Interaction between ACTH fragments, brain opiate receptors and morphine-induced analgesia. Eur. J. Pharmacol. 39: 393–398. 10.1016/0014-2999(76)90150-3 CASPubMedWeb of Science®Google Scholar 70 Ito, M., O. Yu & T. H. Chiu 1988 Interactions of ACTH4-10 and ACTH1-24 with l-[3H]glutamate binding sites and GABA/benzodiazepine/picrotoxin receptor complexes in vitro. Brain Dev. 10: 106–110. 10.1016/S0387-7604(88)80080-9 CASPubMedWeb of Science®Google Scholar 71 Oki, S., K. Nakao, Y. Nakai, N. Ling & H. Imura 1980 “γ-MSH” fragments from ACTH-β-LPH precursor have an affinity for opiate receptors. Eur. J. Pharmacol. 64: 161–166. 10.1016/0014-2999(80)90039-4 PubMedWeb of Science®Google Scholar 72 Pranzatelli, M. R. 1988. Effect of antiepileptic and antimyoclonic drugs on serotonin receptors in vitro. Epilepsia. 29: 412–415. 10.1111/j.1528-1157.1988.tb03740.x CASPubMedWeb of Science®Google Scholar 73 Snell, C. R. & P. H. Snell 1982. A molecular basis for the interaction of corticotropin with opiate receptors. FEBS Lett. 137: 209–215. 10.1016/0014-5793(82)80351-7 CASPubMedWeb of Science®Google Scholar 74 Stengaard-Pederson, K. & L. I. Larson 1981. Interaction of putative opioid peptides with opiate receptor. Acta Pharmacol. Toxicol. 48: 39–42. 10.1111/j.1600-0773.1981.tb01585.x Google Scholar 75 Ternius, L. 1975. Effect of peptides and amino acids on dihydromorphine binding to the opiate receptor. J. Pharm. Pharmacol. 27: 450-255. 10.1111/j.2042-7158.1975.tb09480.x PubMedWeb of Science®Google Scholar 76 Terenius, L., W. H. Gispen & D. de Wied 1975. ACTH-like peptides and opiate receptors in the rat brain: structure-activity studies. Eur. J. Pharmacol. 33: 395–401. 10.1016/0014-2999(75)90185-5 CASPubMedWeb of Science®Google Scholar 77 Tonnaer, J. A. D. M., M. Van Vugt & J. S. De Graaf 1986. In vitro interaction of ACTH with rat brain muscarinic receptors. Peptides. 7: 425–429. 10.1016/0196-9781(86)90009-4 CASPubMedWeb of Science®Google Scholar Citing Literature Volume739, Issue1Models of Neuropeptide ActionOctober 1994Pages 60-73 ReferencesRelatedInformation
Referência(s)