Comment on “Modeling the magnetosphere for northward interplanetary magnetic field: Effects of electrical resistivity” by Joachim Raeder
2000; American Geophysical Union; Volume: 105; Issue: A6 Linguagem: Inglês
10.1029/1999ja000342
ISSN2156-2202
AutoresT. I. Gombosi, Kenneth G. Powell, Bram van Leer,
Tópico(s)Magnetic confinement fusion research
ResumoJournal of Geophysical Research: Space PhysicsVolume 105, Issue A6 p. 13141-13147 CommentariesFree Access Comment on “Modeling the magnetosphere for northward interplanetary magnetic field: Effects of electrical resistivity” by Joachim Raeder Tamas I. Gombosi, Tamas I. GombosiSearch for more papers by this authorKenneth G. Powell, Kenneth G. PowellSearch for more papers by this authorBram van Leer, Bram van LeerSearch for more papers by this author Tamas I. Gombosi, Tamas I. GombosiSearch for more papers by this authorKenneth G. Powell, Kenneth G. PowellSearch for more papers by this authorBram van Leer, Bram van LeerSearch for more papers by this author First published: 01 June 2000 https://doi.org/10.1029/1999JA000342Citations: 23AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat References Boris, J. P., A physically motivated solution of the Alfvén problemTech. Rep. NRL Mem. Rep. 2167Nav. Res. Lab., Washington, D.C., 1970. Evans, C. R., J. F. Hawley, Simulation of magnetohydrodynamic flows: A constrained transport method, Astrophys. J., 332, 659, 1988. Fedder, J. A., J. G. Lyon, The Earth's magnetosphere is 165 Re long: Self-consistent currents, convection, magnetospheric structure, and processes for northward interplanetary magnetic field, J. Geophys. Res., 100, 3623, 1995. Gombosi, T. I., D. L. De Zeeuw, C. P. T. Groth, K. G. Powell, P. Song, The length of the magnetotail for northward IMF: Results of 3D MHD simulations, Physics Space Plasmas, , 15 T. Chang, J. R. Jasperse, 121–128, MIT Press, Cambridge, Mass., 1998. Janhunen, P., GUMICS-3: A global ionosphere-magnetosphere coupling simulation with high ionospheric resolution, Proceedings of ESA 1996 Symposium on Environment Modelling for Space-based Applications, Eur. Space Agency Spec. Publ., ESA SP-392, 233, 1996. Newell, P. T., D. Xu, C. Meng, M. G. Kivelson, Dynamic polar cap: A unified approach, J. Geophys. Res., 102, 127, 1997. Ogino, T., R. J. Walker, A magnetohydrodynamic simulation of the bifurcation of tail lobes during intervals with a northward interplanetary magnetic field, Geophys. Res. Lett., 11, 1018, 1984. Powell, K. G., P. L. Roe, T. J. Linde, T. I. Gombosi, D. L. DeZeeuw, A solution-adaptive upwind scheme for ideal magnetohydrodynamics, J. Comput. Phys., 154, 284, 1999. Raeder, J., Modeling the magnetosphere for northward interplanetary magnetic field: effects of electrical resistivity, J. Geophys. Res., 10517, 357, 1999. Raeder, J., Reply,J. Geophys. Res., 105(A6), 2000. Raeder, J., R. J. Walker, M. Ashour-Abdalla, The structure of the distant geomagnetic tail during long periods of northward IMF, Geophys. Res. Lett., 22, 349, 1995. Shao, A. X., P. N. Guzdar, M. J. Wiltberger, C. C. Goodrich, J. G. Lyon, K. Papadopoulos, The Earth's magnetosphere with northward interplanetary magnetic field, EoS Trans., 7945, Fall Meet. Suppl, F775, 1998. Song, P., D. L. De Zeeuw, T. I. Gombosi, C. P. T. Groth, K. G. Powell, A numerical study of solar wind-magnetosphere interaction for northward IMF, J. Geophys. Res., 104, 28,361, 1999. Usadi, A., A. Kageyama, K. Watanabe, T. Sato, A global simulation of the magnetosphere with a long tail: Southward and northward interplanetary magnetic field, J. Geophys. Res., 98, 7503, 1993. vanLeer, B., Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov's method, J. Comput. Phys., 32, 101, 1979. Citing Literature Volume105, IssueA61 June 2000Pages 13141-13147 ReferencesRelatedInformation
Referência(s)