Socially Structured Populations and Evolution of Recombination under Antagonistic Coevolution
2002; University of Chicago Press; Volume: 160; Issue: 3 Linguagem: Inglês
10.1086/341517
ISSN1537-5323
AutoresPaul Schmid‐Hempel, Jukka Jokela,
Tópico(s)Evolutionary Game Theory and Cooperation
ResumoPrevious article No AccessNotes and CommentsSocially Structured Populations and Evolution of Recombination under Antagonistic CoevolutionPaul Schmid‐Hempel and Jukka Jokela, and Associate Editor: Michael J. WadePaul Schmid‐HempelETH Zürich, Ecology and Evolution, ETH‐Zentrum NW, CH‐8092 Zürich, Switzerland*Corresponding author; e‐mail: [email protected]. Search for more articles by this author and Jukka JokelaETH Zürich, Ecology and Evolution, ETH‐Zentrum NW, CH‐8092 Zürich, Switzerland†Present address: Department of Biology, University of Oulu, Oulu, Finland. Search for more articles by this author , and Associate Editor: Michael J. Wade Search for more articles by this author ETH Zürich, Ecology and Evolution, ETH‐Zentrum NW, CH‐8092 Zürich, SwitzerlandPDFPDF PLUSFull Text Add to favoritesDownload CitationTrack CitationsPermissionsReprints Share onFacebookTwitterLinkedInRedditEmail SectionsMoreDetailsFiguresReferencesCited by The American Naturalist Volume 160, Number 3September 2002 Published for The American Society of Naturalists Article DOIhttps://doi.org/10.1086/341517 Views: 50Total views on this site Citations: 17Citations are reported from Crossref HistoryReceived October 4, 2001Accepted February 4, 2002 Keywordsrecombinationfluctuating epistasisparasitesstructured population© 2002 by The University of Chicago. PDF download Crossref reports the following articles citing this article:Hanna Schenk, Arne Traulsen, Chaitanya S. Gokhale Chaotic provinces in the kingdom of the Red Queen, Journal of Theoretical Biology 431 (Oct 2017): 1–10.https://doi.org/10.1016/j.jtbi.2017.07.027Christoph Kurze, Jarkko Routtu, Robin F.A. Moritz Parasite resistance and tolerance in honeybees at the individual and social level, Zoology 119, no.44 (Aug 2016): 290–297.https://doi.org/10.1016/j.zool.2016.03.007Beth L. Dumont, Amy A. Devlin, Dana M. Truempy, Jennifer C. Miller, Nadia D. Singh, R. Mark Wooten No Evidence that Infection Alters Global Recombination Rate in House Mice, PLOS ONE 10, no.1111 (Nov 2015): e0142266.https://doi.org/10.1371/journal.pone.0142266Violeta Muñoz-Fuentes, Marina Marcet-Ortega, Gorka Alkorta-Aranburu, Catharina Linde Forsberg, Jane M. Morrell, Esperanza Manzano-Piedras, Arne Söderberg, Katrin Daniel, Adrian Villalba, Attila Toth, Anna Di Rienzo, Ignasi Roig, Carles Vilà Strong Artificial Selection in Domestic Mammals Did Not Result in an Increased Recombination Rate, Molecular Biology and Evolution 32, no.22 (Nov 2014): 510–523.https://doi.org/10.1093/molbev/msu322J. Kidner, Robin F. A. Moritz Host-parasite evolution in male-haploid hosts: an individual based network model, Evolutionary Ecology 29, no.11 (Jul 2014): 93–105.https://doi.org/10.1007/s10682-014-9722-yDaniela Vergara, Jukka Jokela, and Curtis M. Lively Infection Dynamics in Coexisting Sexual and Asexual Host Populations: Support for the Red Queen Hypothesis., The American Naturalist 184, no.S1S1 (Jul 2015): S22–S30.https://doi.org/10.1086/676886Yuan Yuan Shi, Liang Xian Sun, Zachary Y. Huang, Xiao Bo Wu, Yong Qiang Zhu, Hua Jun Zheng, Zhi Jiang Zeng, Omprakash Mittapalli A SNP Based High-Density Linkage Map of Apis cerana Reveals a High Recombination Rate Similar to Apis mellifera, PLoS ONE 8, no.1010 (Oct 2013): e76459.https://doi.org/10.1371/journal.pone.0076459J. Kidner, R. A. F. Moritz The Red Queen Process does not Select for High Recombination Rates in Haplodiploid Hosts, Evolutionary Biology 40, no.33 (Feb 2013): 377–384.https://doi.org/10.1007/s11692-012-9221-4Britt Koskella, Curtis M. Lively EVIDENCE FOR NEGATIVE FREQUENCY-DEPENDENT SELECTION DURING EXPERIMENTAL COEVOLUTION OF A FRESHWATER SNAIL AND A STERILIZING TREMATODE, Evolution 63, no.99 (Sep 2009): 2213–2221.https://doi.org/10.1111/j.1558-5646.2009.00711.xMarcel Salathé, Roger D. Kouyos, and Sebastian Bonhoeffer On the Causes of Selection for Recombination Underlying the Red Queen Hypothesis. M. Salathé et al., The American Naturalist 174, no.S1S1 (Jul 2015): S31–S42.https://doi.org/10.1086/599085Roger D. Kouyos, Marcel Salathé, Sarah P. Otto, Sebastian Bonhoeffer The role of epistasis on the evolution of recombination in host–parasite coevolution, Theoretical Population Biology 75, no.11 (Feb 2009): 1–13.https://doi.org/10.1016/j.tpb.2008.09.007Dieter Ebert Host–parasite coevolution: Insights from the Daphnia–parasite model system, Current Opinion in Microbiology 11, no.33 (Jun 2008): 290–301.https://doi.org/10.1016/j.mib.2008.05.012Marcel Salathé, Roger D. Kouyos, Roland R. Regoes, Sebastian Bonhoeffer RAPID PARASITE ADAPTATION DRIVES SELECTION FOR HIGH RECOMBINATION RATES, Evolution 62, no.22 (Feb 2008): 295–300.https://doi.org/10.1111/j.1558-5646.2007.00265.xA. D. PETERS, C. M. LIVELY Short- and long-term benefits and detriments to recombination under antagonistic coevolution, Journal of Evolutionary Biology 20, no.33 (May 2007): 1206–1217.https://doi.org/10.1111/j.1420-9101.2006.01283.xL Wilfert, J Gadau, P Schmid-Hempel Variation in genomic recombination rates among animal taxa and the case of social insects, Heredity 98, no.44 (Mar 2007): 189–197.https://doi.org/10.1038/sj.hdy.6800950L. WILFERT, J. GADAU, B. BAER, P. SCHMID-HEMPEL Natural variation in the genetic architecture of a host-parasite interaction in the bumblebee Bombus terrestris, Molecular Ecology 16, no.66 (Jan 2007): 1327–1339.https://doi.org/10.1111/j.1365-294X.2007.03234.xO Fischer, P Schmid-Hempel Selection by parasites may increase host recombination frequency, Biology Letters 1, no.22 (May 2005): 193–195.https://doi.org/10.1098/rsbl.2005.0296
Referência(s)