Role of 5‐HT 1A Receptors in Acquisition, Consolidation and Retrieval of Learning
1997; Wiley; Volume: 3; Issue: 1 Linguagem: Inglês
10.1111/j.1527-3458.1997.tb00317.x
ISSN1527-3458
AutoresAlfredo Meneses, Enrique Hong,
Tópico(s)Receptor Mechanisms and Signaling
ResumoCNS Drug ReviewsVolume 3, Issue 1 p. 68-82 Free Access Role of 5-HT1A Receptors in Acquisition, Consolidation and Retrieval of Learning Alfredo Meneses, Corresponding Author Alfredo Meneses Terapéutica Experimental, Departamento de Farmacología y Toxicologia, CINVESTAV-IPN, México, D. F.Address correspondence and reprint requests to Dr. Alfredo Meneses, Terapéutica Experimental, Depto. Farmacologia y Toxicologia, CINVESTAV-IPN, Ap. Postal 220126, Mexico, D. F., 14000, Mexico. Fax +52 (5) 675–9168. Supported by CONACYT grant No. 4367-M194060.Search for more papers by this authorEnrique Hong, Enrique Hong Terapéutica Experimental, Departamento de Farmacología y Toxicologia, CINVESTAV-IPN, México, D. F.Search for more papers by this author Alfredo Meneses, Corresponding Author Alfredo Meneses Terapéutica Experimental, Departamento de Farmacología y Toxicologia, CINVESTAV-IPN, México, D. F.Address correspondence and reprint requests to Dr. Alfredo Meneses, Terapéutica Experimental, Depto. Farmacologia y Toxicologia, CINVESTAV-IPN, Ap. Postal 220126, Mexico, D. F., 14000, Mexico. Fax +52 (5) 675–9168. Supported by CONACYT grant No. 4367-M194060.Search for more papers by this authorEnrique Hong, Enrique Hong Terapéutica Experimental, Departamento de Farmacología y Toxicologia, CINVESTAV-IPN, México, D. F.Search for more papers by this author First published: 29 September 2006 https://doi.org/10.1111/j.1527-3458.1997.tb00317.xCitations: 18AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onFacebookTwitterLinkedInRedditWechat References 1 Aghajanian GK. Electrophysiology of serotonin receptor subtypes and signal transaction pathways. In: EF Bloom, DJ Kupfer, eds. Psychopharmacology: The Forth Generation of Progress. New York : Raven Press 1995; 451– 460. 2 Altman HJ, Normile HJ. What is the nature of the role of the serotonergic nervous system in learning and memory: Prospects for development of an effective treatment strategy for senile dementia. Neurobiol Aging 1988; 9: 627– 638. 3 Alvarez P, Squire LR. Memory consolidation and medial temporal lobe: A simple network model. Proc Natl Acad Sci USA 1994; 91: 7041– 7045. 4 Andrade R. Electrophysiology of 5-HT1A receptors in the rat hippocampus and cortex. Drug Dev Res 1992; 26: 275– 286. 5 Balleine BW, Fletcher N, Dickinson A. Effect of the agonists, 8-OH-DPAT on instrumental performance in rats. Psychopharmacology 1996; 125: 79– 88. 6 Bartolomeo AC, Morris H, Moyer JA, Boast CA. Attenuated MK-801 -induced impairment of radial maze performance in rats. A possible model predicting efficacy in Alzheimer's disease. Soc Neurosci Abstr 1996; 22: 143. 7 Bass EW, Means LW, Mcmillen BA. Buspirone impairs performance of a three-choice working memory water escape task in rats. Brain Res Bull 1992; 28: 455– 461. 8 Berendsen HHG. Interactions between 5-hydroxytryptamine receptor subtypes: Is a disturbed receptor balance contributing to the symptomatology of depression in humans. Pharmacol Ther 1995; 66: 17– 37. 9 Bijak M, Tokarski K, Maj J. Repeated treatment with antidepressant drugs induces subsensitivity to the excitatory effect of 5-HT4 receptor activation in the rat hippocampus. Naunyn Schmiedeberg's Arch Pharmacol 1997; 355: 14– 19. 10 Blier P, De Montigny C. Current advances and trends in the treatment of depression. TIPS 1994; 15: 220– 226. 11 Blier P, Lista A, De Montigny C. Differential properties of pre- and postsynaptic 5-hydroxytryptamine1A receptors in the dorsal raphé and hippocampus: 1. Effect of spiperone. J Pharmacol Exp Ther 1993; 265: 7– 15. 12 Briley M. Biochemical strategies in the search for cognition enhancers. Pharmacopsychiatry (Suppl 1) 1990; 23: 75– 80. 13 Buhot MC, Nal'li S. Changes in exploratory activity following stimulation of hippocampal 5-HT1A and 5-HT1B receptors in the rat. Hippocampus 1995; 5: 198– 208. 14 Carli M, Samanin R. 8-Hydroxy-2-(di-rt-propylamino)tetralin impairs spatial learning in a water maze: Role of postsynaptic 5-HT1A. Br J Pharmacol 1992; 105: 720– 726. 15 Carli M, Luschi R, Garofalo P, Samanin R. 8-OH-DPAT impairs spatial but not visual learning in a water maze by stimulating 5-HT1A receptors in the hippocampus. Behav Brain Res 1995; 67: 67– 74. 16 Carli M, Lazarova M, Tatarczynska E, Samanin R. Stimulation of 5-HT1A receptors in the dorsal hippocampus impairs acquisition and performance of a spatial task in a water maze. Brain Res 1992; 595: 50– 56. 17 Cassel JC, Jeltsch H. Serotonergic modulation of cholinergic function in the central nervous system: Cognitive implications. Neuroscience 1995; 69: 1– 41. 18 Cliffe IA, Fletcher A, Dourish CT. The evolution of selective, silent 5-HT1A receptor antagonists. Current Drugs: Serotonin 1993; 99– 124. 19 Cole BJ, Jones OH, Turner JD. 5-HT1A receptor agonists improve the performance of normal and scopolamine-impaired rats in an operant delayed matching to position task. Psychopharmacology 1994; 116: 135– 142. 20 Coplan JD, Wolk SI, Klei DF. Anxiety and serotonin1A receptor. In: FE Bloom, DJ Kupfer, eds. Psychopharmacology: The Fourth Generation of Progress. New York : Raven Press 1995; 1301– 1310. 21 Costall B, Naylor RJ. The psychopharmacology of 5-HT3 receptors. Pharmacol Toxicol 1992; 71: 407– 415. 22 Davidson C, Stamford JA. The effect of paroxetine on 5-HT efflux in the rat dorsal raphé nucleus is potentiated by both 5-HT1A and 5-HT1B/1D receptor antagonists. Neurosci Let 1995; 188: 41– 44. 23 Davidson C, Stamford JA. Evidence that 5-hydroxytryptamine release in rat dorsal raphi nucleus is controlled by 5-HT1A, 5-HT1B and 5-HT1D autoreceptors. Br J Pharmacol 1995; 114: 1107– 1109. 24 Deacon RMJ. Pharmacological studies of a rat spatial delayed nonmatch-to-sample task as an animal model of dementia. Drug Dev Res 1991; 24: 67– 79. 25 Decker MW, McGaugh JL. The role of interactions between the cholinergic system and other neuromodulatory systems in learning and memory. Synapse 1991; 7: 151– 168. 26 Dijk SN, Francis PT, Stratmann GC, Bowen DM. NMDA-induced glutamate and aspartate release from rat cortical pyramidal neurons: Evidence lor modulation by a 5-HT1A antagonist. Br J Pharmacol 1995; 115: 1169– 1174. 27 Dolmella A, Bandoli G, Nicolini M. Alzheimer's disease: A pharmacological challenge. In: B Testa, UA Meyer, eds. Advances in Drug Research, London : Academic Press 1994; 203– 294. 28 Dourish CT. Brain 5-HT1A receptors and anxiety. In: CT Dourish, S Ahlenius, PH Hutson, eds. Brain 5-HT1A: Behavioral and Neurochemical Pharmacology. Chichester : Ellis Horwood 1987; 261– 277. 29 Dourish CT. Multiple serotonin receptors: Opportunities tor new treatments for obesity. Obesity Res (Suppl 4) 1995; 3: 449S– 462S. 30 Doyere V, Burette F, Redini-delNegro C, Laroche S. Long-term potentiation of hippocampal artcrents and ellerents to prefrontal cortex: Implications for associative learning. Neuropsycliology 1993; 31: 1031– 1053. 31 Dunnett SB. Strategies for testing learning and memory abilities in transplanted rats. In: SD Dunnett, A Björklund, eds. Functional Neural Transplantation. New York : Raven Press 1994; 217– 251. 32 Eichenbaum H, Otto T, Cohen NJ. Two functional components of the hippocampal memory system. Behav Brain Sci 1994; 17: 449– 518. 33 Elliot JM, Flanigan TP, Newberry NR, Zetterstrom T, Leslie RA. 5-HT receptor subtypes: Aspects of their regulation and function. Neurochem Int 1994; 25: 537– 543. 34 Eglen RM, Wong EH, Dumuis A, Bockaert J. Central 5-HT4 receptors. TIPS 1995; 16: 391– 398. 35 Evcnden JL, Angeby K. Effects of 8-hydroxy-2-(di-n-propylaminotetralin) (8-OH-DPAT) on locomotor activity and rearing of mice and rats. Psychopharmacology 1990; 102: 485– 491. 36 Fletcher A, Cliffc IA, Dourish CT. Silent 5-IIT1A receptor antagonists: Utility as research tools and therapeutic agents. TIPS 1993; 14: 441– 448. 37 Fletcher A, Forstcr EA, Bill DJ, et al. Electrophysiological, biochemical, neurohormonal and behavioral studies with WAY 100,635, a potent, selective and silent 5-HT1A receptor antagonists. Beliav Brain Res 1996; 73: 337– 353. 38 Fletcher PJ. Dopamine receptor blockade in nucleus accumbens or caudate nucleus differentially affects feeding induced by 8-OH-DPAT injected into dorsal or median raphe. Brain Res 1991; 552: 181– 189. 39 Francis PT, Pangalos MN, Pearson RCA, Middlemiss DN, Stratmann GC, Bowen DM. 5-1 lydroxytryptpmine1A but not 5-hydroxylryptamine2 receptors are enriched on neocortical pyramidal neurons destroyed by intrastriatal volkensin. J Pharmacol Exp Ther 1992; 261: 1273– 1281. 40 Gartside SE, Umbers V, Hajos M, Sharp T. Interaction between a selective 5-HT1A receptor antagonist and SSRI in vivo: Effects on 5-HT cell firing and extracellular 5-HT. Br J Pharmacol 1995 41 Ghelardini C, Galeotti N, Meoni P, Giotti A, Rizzi CA, Bartolini A. Effect of 5-HT4 agonists: B1MUI and BIMU8 on the social learning test in rats. CINP Congress, June 1993. Washington, DC. 42 Ghelardini C, Meoni P, Galeotti N, Malmberg-Aiello O, Rizzi CA, Bartolini A. Effect of the two benzimidazolone derivates: BIMU-1 and BIMU-8 on a model of hypoxia-induced amnesia in the mouse. 5-HT Third IUPHAR Satellite Meeting on Serotonin, July-August 1994. Chicago, Illinois. 43 Ghelardini C, Malmberg-Aiello O, Bartolini A, Rizzi CA. Protective effect of BIMU-1 and BIMU-8 on amnesia induced by hypercapnia. 10th Congress of Eur Soc for Neurochem, August 1994. Jerusalem. 44 Glennon RA, Dukat M. Serotonin receptor subtypes. In: FE Bloom, DJ Kupfer, eds. Psychopharmacology. The Fourth Generation of Progress. New York : Raven Press 1995; 415– 429. 45 Gower AJ. 5-HT receptors and cognitive function. In: CA Marsden, DJ Heal, eds. Central Serotonin Receptors and Psychotropic Drugs. Oxford : Blackwell Scientific Publications 1992; 239– 259. 46 Harvey JA. Serotonergic regulation of associate learning. Behav Brain Res 1996; 73: 47– 50. 47 Handley SL. 5-Hydroxytryptamine pathways in anxiety and its treatment. Pharmac Ther 1995; 66: 103– 148. 48 Handley SL, McBlane JW, Critchley MAE, Njung'e K. Multiple serotonin mechanisms in animal models of anxiety: Environmental, emotional and cognitive factors. Behav Brain Res 1993; 58: 203– 210. 49 Harder JA, Kelley ME, Cheng CHK, Costall B. Combined PCPA and muscarinic antagonist treatment produces a deficit in rat water maze acquisition. Pharmacol Biochem Behav 1996; 55: 6l– 65. 50 Harder JA, Maclean CJ, Alder JT, Francis PT, Ridley RM. The 5-HT1A antagonist, WAY 100,635, ameliorates the cognitive impairment induced by fornix transection in the marmoset. Psychopharmacology 1996; 127: 245– 254. 51 Heninger GR. Indolamines: the role of serotonin in clinical disorders. In: EF Bloom, DJ Kupfer, eds. Psychopharmacology: The Fourth Generation of Progress. New York : Raven Press 1995; 471– 482. 52 Herremans AHJ, Hijzen TH, Olivier B, Slangen JL. Serotonergic drugs effects on a delayed conditional discrimination task in the rat, involvement of the 5-HT1A receptor in working memory. Psycliopharmacol 1995; 9: 242– 250. 53 Hjorth S. (-)-Pindolol, but not buspirone, potentiates the citalopram-induced rise in extracellular 5-hy-droxytryptamine. Eur J Pharmacol 1996; 303: 183– 186. 54 Hodges H, Sowinski P, Turner JJ, Fletcher A. Comparison of the effects of the 5-HTs antagonists WAY 100,579 and ondansetron on spatial learning in the water maze in rats with excitotoxic lesions of the forebrain cholinergic projection system. Psychopharmacology 1996; 25: 146– 161. 55 Hong E, Meneses A. The activation of Serotonergic 5-HT1A presynaptic receptors or an enhancement of 5-HT postsynaptic activity increase learning. Proc West Pharmacol Soc 1995; 38: 86– 86. 56 Hong E, Meneses A. The increase in learning induced by indorenate and 8-OH-DPAT was blocked by silent 5-HT1A antagonists. Soc Neurosci Abstr 1995; 21: 1228. 57 Hong E, Meneses A. Systemic injection of p-chloroamphetamine eliminates the effect of the 5-HT3 compounds on learning. Pharmacol Biochem Behav 1996; 53: 765– 769. 58 Hoyer D, Hartig PR, Humphrey PPA. International Union of Pharmacology classification of receptors for 5-hydroxytryptamine (serotonin). Pharmacol Rev 1994; 46: 157– 203. 59 Hoyer D, Martin GR. Classification and nomenclature of 5-HT receptors: A comment on current issues. Behav Brain Res 1996; 3: 263– 268. 60 Hunter AJ, Roberts FF. The effects of 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) on spatial learning in the Morris water maze. In: CT Dourish, S Ahlenius, PH Hutson, eds. Brain S-HT1A Receptors: Behavioral and Neurochemical Pharmacology. Chichester : Ellis Horwood 1987; 278– 285. 61 Izquierdo I. Pharmacology of memory: Drugs acting upon the neurotransmitter mechanisms involved in memory consolidation. In: J Delacour, ed. The Memory System of the Brain. Singapore : World Scientific 1994; 365– 388. 62 Jacobs BL, Azmitia EC. Structure and function of the brain serotonin system. Physiol Rev 1992; 72: 165– 229. 63 Jansen JHM, Andrews JS. The effects of Serotonergic drugs on short-term spatial memory in rats. J Psychopharmacol 1994; 8: 157– 163. 64 Kant JG, Meininger GR, Maughan KR, Wright WL, Robinson TN, Neely TM. Effects of the serotonin receptor agonists 8-OH-DPAT and TFMPP on learning as assessed using a novel water maze. Pharmacol Biochem Behav 1996; 53: 385– 390. 65 Kia HK, Brisorgueil MJ, Daval, Langlois X, Hamon M, Verge D. Serotonin1A receptors are expressed by a subpopulation of cholinergic neurons in the rat medial septum and diagonal band of Broca - a double immunocytochemical study. Neuroscience 1996; 74: 143– 154. 66 Klint T. Effects of 8-OH-DPAT and buspirone in a passive avoidance test and in the elevated plus-maze test in rats. Behav J Pharmacol 1991; 2: 481– 489. 67 Laroche S, Redini-delNegro C, Clements MP, Lynch MA. Long-term activation of phosphoinositide turnover associated with increased release of amino acids in the dentate gyrus and hippocampus following classical conditioning in the rat. Eur J Neurosci 1990; 2: 34– 543. 68 Lister RG. The effects of benzodiazepines and 5-HT1A agonists on learning and memory. In: RJ Rodgers, SJ Cooper, eds. 5-HT1A Agonists, 5-HT3 Antagonists and Benzodiazepines: Their Comparative Behavioral Pharmacology. Chichester : John Wiley 1991; 267– 280. 69 Markowitsch HJ. Organic and Psychogenic retrograde amnesia: two sides of the same coin Neurocase 1996; 2 (in press). 70 McEntee WJ, Cook TH. Serotonin, memory, and the aging brain. Psychopharmacology 1991; 103: 143– 149. 71 McGaugh JL. Dissociating learning and performance: drug and hormone enhancement of memory storage. Brain Res Bull 1989; 23: 339– 345. 72 Mendelson SD, Quartermain D, Francisco T, Shelter A. 5-HT1A receptor agonists induce anterograde amnesia in mice. Eur J Pharmacol 1993; 236: 177– 182. 73 Meneses A, Hong E. Effects of Serotonergic compounds on associative learning. Proc West Pharmacol Soc 1991; 4: 461– 464. 74 Meneses A, Hong E. Modification of the anxiolytic effects of 5-HT1A agonists by shock intensity. Pharmacol Biochem Behav 1993; 6: 569– 573. 75 Meneses A, Hong E. Modification of 8-OH-DPAT effect on learning by manipulation of the assay conditions. Behav Neural Bull 1994; 61: 29– 35. 76 Meneses A, Hong E. Mechanisms of action of 8-OH-DPAT on learning and memory. Pharmacol Biochem Behav 1994; 49: 1083– 1086. 77 Meneses A, Hong E. Effect of fluoxetine on learning and memory involves multiple 5-HT systems. Pharmacol Biochem Behav 1995; 52: 341– 346. 78 Meneses A, Hong E. Effects of 5-HT receptor antagonists OR 127,935T (5-HT1B/1D) and MDL 100,907 (5-HT2A) on learning. Soc Neurosci Abstr 1996; 22: 1586. 79 Meneses A, Hong E. Effects of 5-HT4 receptor agonists and antagonists in learning. Pharmacol Biochem Behav 1997 (in press). 80 Meneses A, Hong E. A pharmacological analysis of serotonergic receptors: Effects of their activation or blockade in learning. Prog Neuro-Psychopharmacol Biol Psychiat 1997; 21: 273– 296. 81 Mondadori C, Etienne P. Nootropic effects of ACE inhibitors in mice. Psychopharmacology 1990; 100: 301– 307. 82 Mondadori C, Hengerer B, Ducret T, Borkowski J. Delayed emergence of effects of memory-enhancing drugs: Implications for the dynamics of long-term memory. Proc Natl Acad Sci USA 1994; 91: 2041– 2045. 83 Nabeshima TK, Itoh K, Kawashima K, Kameyama T. Effects of 5-HT2 receptor antagonist on cycloheximide-induced amnesia in mice. Pharmacol Biochem Behav 1989; 32: 787– 790. 84 Noda Y, Ochi Y, Shimada E, Oka M. Involvement of central cholinergic mechanism in RU-24969-in-duced behavioral deficits. Pharmacol Biochem Behav 1991; 38: 441– 446. 85 Palacios JM. Serotonin receptor subtypes: exploiting their therapeutic potential. In: AC Cuello, B Collier, eds. Pharmacological Sciences: Perspectives for Research and Therapy in the Late 1990s. Basel , Switzerland : Birkhauser Verlag 1995; 17– 27. 86 Passani MB, Corradetti R. Therapeutic potentials of itasetron (DAU 6215), a novel 5-HT3 receptor antagonist, in the treatment of central nervous system disorders. CNS Drug Rev 1996; 2: 195– 213. 87 Pecknold JC. Serotonin 5-HT1A agonists. CNS Drug Rev 1996; 2: 234– 251. 88 Peroutka SJ. Molecular biology of serotonin (5-HT) receptors. Synapse 1994; 18: 241– 260. 89 Pompeiano M, Palacios JM, Mengod G. Distribution of the serotonin 5-HT2 receptor family mRNAs: Comparison between 5-HT2A and 5-HT2c receptors. Mol Brain Res 1994; 23: 163– 178. 90 Quatermain D, Clemente J, Shemer A. The 5-HT1A agonist tandospirone disrupts retention but not acquisition of active avoidance learning. Pharmacol Biochem Behav 1994; 48: 805– 807. 91 Radja F, Laporte AM, Daval G, Vergé D, Gozlan H, Hamon M. Autoradiography of serotonin receptor subtypes in the central nervous system. Neurochem Int 1991; 18: 1– 15. 92 Ramirez MJ, Cenarruzabeitia E, Lasheras B, del Rio J. Involvement of GABA systems in acetylcholine release induced by 5-HTs receptor blockade in slices from rat entorhinal cortex. Brain Res 1996; 712: 274– 280. 93 Riekkinen P. 5-HT1A and muscarinic acetylcholine receptors jointly regulate passive avoidance behavior. Ear J Pharmacol 1994; 262: 77– 90. 94 Riekkinen M, Tolonen R, Riekkinen P. Interaction between 5-HT1A and nicotinic cholinergic receptors in the regulation of water maze navigation behavior. Brain Res 1994; 649: 174– 180. 95 Riekkinen M, Sirviö J, Toiven T, Riekkinen P. Combined treatment with a 5-HT1A receptor agonist and a muscarinic acetylcholine receptor antagonist disrupts water maze navigation behavior. Psychopharmacology 1995; 122: 137– 146. 96 Ross SB, Renyi L, Kelder D. N-methyl-D-aspartate receptor antagonist counteract the long lasting 5-HT 1A receptor-induced attenuation of postsynaptic responses in the rat in vivo. Naunyn Schmiedeberg's Arch Pharmacol 1992; 346: 138– 143. 97 Rowan MJ, Cullen WK, Moulton B. Buspirone impairment of performance of passive avoidance and spatial learning tasks in the rat. Psychopharmacology 1990; 100: 393– 398. 98 Samanin R, Luschi R, Vezzani A, Carli M. Impairment of spatial learning induced by intrahippocampal scopolamine: Its reversal by arecoline, ondansetron and intrahippocampal (+)-WAY 100,135. Soc Neurosci Abstr 1994; 20: 149. 99 Sanders-Bush E, Canton H. Serotonin receptors: Signal transduction pathways. In: EF Bloom, DJ Kupfer, eds. Psychopharmacology: The Fourth Generation of Progress. New York : Raven Press 1995; 431– 41. 100 Sanger DJ, Joly D. Performance of a passive avoidance response is disrupted by compounds acting at 5-HT1A receptors. Behav Pharmacol 1989; 1: 235– 240. 101 Sanger DJ, Joly D, LePichon M. Buspirone, gepirone and ipsapirone disrupt both active and passive avoidance responding in rats. Behav Pharmacol 1989; 1: 153– 160. 102 Sarter M. Taking stock of cognition enhancers. TIPS 1991; 112: 456– 461. 103 Sarter M, Hagan J, Dudchenko P. Behavioral screening for cognition enhancers: From indiscriminate to valid testing: Part I. Psychopharmacology 1992; 107: 144– 159. 104 Sarter M, Hagan J, Dudchenko P. Behavioral screening for cognition enhancers: From indiscriminate to valid testing: Part II. Psychopharmacology 1992; 107: 461– 473. 105 Saxena PR, Clarke DE, Ford APDW, et al.. Therapeutic possibilities with serotonergic drugs. In: AC Cuello, B Collier, eds. Pharmacological Sciences: Perspectives for Research and Therapy in the Late 1990s. Basel , Switzerland : Birkhduser Verlag 1995; 231– 240. 106 Sirvio J, Riekkinen P, Jtlkala P, Riekkinen PJ. Experimental studies on the role of serotonin in cognition. Prog Neurobiol 1994; 43: 363– 379. 107 Stanhope KJ, McLenachan AP, Dourish CT. Dissociation between cognitive and motor/motivational detlcits in the delayed matching to position test: Effects of scopolamine, 8-OH-DPAT and EAA antagonists. Psychopharmacology 1995; 122: 268– 280. 108 Staubli U, Xu FB. Effects of S-HT3 receptor antagonism on hippocampal theta rhythm, memory, and LTP induction in the freely moving rat. J Neurosci 1995; 15: 2445– 2452. 109 Torres C, Morales A, Candida A, Maldonado A. Differential effect of buspirone and diazepam on negative contrast in one-way avoidance learning. Eur J Pharmacol 1995; 280: 277– 284. 110 Traber J, Davies MA, Dompert WU, Glaser T, Schuurman T, Seidel PR. Brain serotonin receptors as a target for the putative anxiolytic TVXQ 7821. Brain Res Bull 1984; 12: 741– 744. 111 Tyers MB, Barnes JC. 5-HT and memory. Can J Physiol Pharmacol 1994; 72: 63. 112 Vnek N, Rothblat LA. The hippocampus and long-term object memory in the rat. J Neurosci 1996; 16: 2780– 2787. 113 Unrug-Neervoort A, VanLuijtelaar G, Coenen A. Cognition and vigilance: Differential effects of diazepam and buspirone on memory and psychomotor performance. Neuropsychobiology 1992; 26: 146– 150. 114 Whitaker-Azmitia PM, Azmitia EC. Astroglial 5-HT1A receptors and S-100β in development and plasticity. Persp Devel Neurobiol 1994; 2: 233– 238. 115 Wilkinson LO, Dourish CT. Serotonin and animal behavior. In: SJ Peroutka, ed. Serotonin Receptors Subtypes. New York : Wiley-Liss 1991; 147– 210. 116 Wilkinson LS, Humby T, Killcross S, Robbins TW, Everitt BJ. Dissociations in hippocampal 5-hydroxytryptamine release in the rat following Pavlovian aversive conditioning to discrete and contextual stimuli. J Neurosci 1996; 8: 1479– 1487. 117 Winsauer PJ, Bixler MA, Mele PC. Comparison of the effects of typical and atypical anxiolytics on learning in monkeys and rats. J Pharmacol Exp Ther 1996; 276: 1111– 1127. 118 Winter JC, Petti DT. The effects of 8-hydroxy-2-(di-n-propylamino)tetralin and other serotonergic agonists on performance in a radial maze: A possible role for 5-HT1A receptors in memory. Pharmacol Biochem Behav 1987; 27: 625– 628. 119 Waszczak BL, Martin LP, Jackson DM. Inhibition of dorsal raphi cell firing by putative 5-HT1A antagonists: 5-HT1A partial agonism or a-adrenergic blockade Soc Neurosci Abstr 1996; 22: 1322. 120 Wright DE, Seroogy KB, Lundgren KH, Davis BM, Jennes L. Comparative localization of serotonin1A, 1c, and 2 receptor subtype mRNAs in rat brain. J Camp Neural 1995; 351: 357– 373. 121 Zifa E, Pillion G. 5-Hydroxytryptamine receptors. Pharmacol Rev 1992; 44: 401– 458. 122 Zola-Morgan S, Squire LR. Neuroanatomy of memory. Ann Rev Neurosci 1993; 16: 547– 563. Citing Literature Volume3, Issue1March 1997Pages 68-82 ReferencesRelatedInformation
Referência(s)