METAL IONS IN BIOLOGICAL SYSTEMS
1953; Wiley; Volume: 28; Issue: 4 Linguagem: Inglês
10.1111/j.1469-185x.1953.tb01384.x
ISSN1469-185X
Autores Tópico(s)Analytical Chemistry and Chromatography
ResumoBiological ReviewsVolume 28, Issue 4 p. 381-412 METAL IONS IN BIOLOGICAL SYSTEMS R. J. P. WILLIAMS, R. J. P. WILLIAMS Merton College, OxfordSearch for more papers by this author R. J. P. WILLIAMS, R. J. P. WILLIAMS Merton College, OxfordSearch for more papers by this author First published: November 1953 https://doi.org/10.1111/j.1469-185X.1953.tb01384.xCitations: 102AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL REFERENCES Albert, A. (1950a). The avidity of folic adcid and other pteridines for the ions of heavy metals. Biochem. J. 47, ix. Albert, A. (1950b). Quantitative sudies of the avidity of naturally occurring substances for trace metals. I. Amino-acis having only tow ionizing glroups. Biochem. J. 47, 531. Albert, A. (1952). Quantitive studies of the avidity of naturall occurring substances for trace metals. II. amino-acids having three ionizing groups. Biochem. J. 50, 690. Baxendale, J. H. & George, P. (1950). The kinetics of formation and dissociation of the ferrous tris dipyridylk ion. Trans. Faraday Soc. 46, 736. Bell, R. P. & Waindl, G. M. (1951). The decomposition of nitramide in solutions of some metal salts of carboxylic acids. J. chem. Soc. p. 2357. Bergmann, M. & Smith, E. L. (1941) . The activation of intestinall peptidases by manganese. J. biol. Chem. 138, 789. Binkley, F. & Olson, C. K. (1950). Phosphatase of brain tissue. J. biol. Chem. 186, 725. Bjerum, J. (1941). Metal ammine formation in aquenous solution. Copenhagen : P. Haase. Bjerrum, J. (1950). On the tendency of the metal ions toward complex formation. Chem. Rev. 46, 381. Boos, R. N., Rosenblum, C. & Woodbury, D. T. (1951). The exchange stability of cobalt in vitamin B12. J. Amer. chem. Soc. 73, 5446. Brandt, W. W. & Smith, G. F. (1949). Polysubstituted 1:10 phenanthrolines and bipyridines as multiple range redox indicatiors. Analyt. Chem. 21, 1313. Brown, B. R. (1951). The mechanism of thermal decarboxylation. Quart. Rev. chem. Soc., 5, 131. Buhs, R. P., Newstead, E. G. & Trenner, R. G. (1951). An analog of vitamin B12, Science, 113, 625. Bukin, A. R. (1951). The stabilities of complex compounds. Quart. Rev. chem. Soc. 5, 1. Calvin, M. & Wilson, K. W. (1945). Stability fo chelate compounds. J. Amer. Chem. Soc. 67, 2003. Calvin, M., Bailes, R. H. & Wilmarth, W. K. (1946). The oxygen carrying synthetic chelate compounds. J. Amer. chem. Soc. 68, 2254. (For further sutdies of these compounds see Calvin, M. & co-workers. J. Amer. chem. Soc. (1946). 68, 2257, 2263, 2273, 2612, and l(1947) 69, 1886. Calvin, M. & Melchior, N. C. (1948). Stability of chelate compounds. IV. Effect of the metal ion. J. Amer. chem. soc. 70, 3270. Chance, B. (1951). Enzyme-substrate compounds. Advance. Enzym. 12, 153. Conant, J. D., Dersch, F. & Mydans, W. E. (1934). The prosthetic group of Limulus hemocyanin. J. biol. chem. 107, 755. Dwason, R. & Mallette, M. F. (1945). The cooper proteins. Advanc. Protein Chem. 2, 179. Denney, T. O. & Monk, C. B. (1951). Ion pair formation in thiosulphate solutions. Trans. Faraday Soc. 47, 992. Dobbie, H., Kermack, W. O. & Less, H. (1951). The combination of peptides with metals. I. Cupric ions with glycyl-glycine and diglycyl-glycine. Biochem. J. 50, v. Eldmondsonl, Y. H. & Thimann, K. V. (1950). The biogenesis of anthocyanins. II. Evidence for the mediation of copper in anthocyanin synthesis. Arch. Biochem. 25, 79. Frank, H. S. & Evans, M. G. (1945). Free volume and entropy in condensed systems. III. Entropy in binary liquid mixtures: partial molar entropy in dilute solutions: structure and thermodynamics in aqueous electroytes. J. chem. Phys. 13, 507. Freiser, H. & Charles, R. G. (1952). Stability of chelates of o-aminophenol and of o-aminobenzene thiol. J. Amer. chem. Soc. 74, 1385. Freiser, H. Charles, R. G. & Johnston, W. D. (1952). Structure and bahaviour of organic analytical reagents. I. The calvin-Bjerrum method for the determination of chelate stability. J. Amer. chem. Soc. 74, 1383. Gilbert, J. B., Otey, M. C. & Price, V. E. (1951). The enzymatic susceptibility of the red cobalt complexes of several dipeptideas. J. biol. Chem. 190, 377. Green, M. N., Gladner, J. A., Cunningham, L. W. & Neurath, H. (1952). The effect of divalent cations on the enzymatic activities of trypsin and of αchmotrypsin. J. Amer. chem. Soc. 74, 2122. Green, D. E., Herbert, D. & Subrahmanyan, V. (1941). Carboxylase. J. biol. Chem. 138, 327. Greenberg, D. M. (1944). The interaction between the alkali earth cations, particularly calcium, and proteins. Advanc, Protein Chem. I, 121. Greenberg, D. M. & Greenberg, M. (1931). Ultrafiltration. I. Ultrafiltration of electrolytes from alkali caseinate solutions. J. biol. Chem. 94 373. Gurd, F. R. N., Edsall, J. T., Felsenfeld, G. & Goodman, D. S. (1952). Imidazole complexes with copper and zinc ions. Fed. Proc. II, 224. Hanson, H. T. & Smith, E. L. (1949). Carnosinase; an enzyme of swine kidney. J. biol. Chem. 179, 789. see also p. 803. Hearon, J. Z., Burk, M. & Schade, A. L. (1948). Physio-chemical studies of reversible and irreversible complexes of cobalt, histidine, and molecular oxygen. J. Nat. Cancer Inst. 9, 337. Hellerman, L. & Perkins, Perkins, M. E. (1935). Activation fo enzymes. III. The role fo matal ions in the activation of argtininase. J. biol. Chem. 112, 175. Hellerman, L. & Stock, C. C. (1938). Activation of enzymes. V. The specificity of argininas and the non-enzymatic hydrolysis of guanidino compounds. Activating metal ions and liver argininase. J. biol. Chem. 125, 771. Herbert, D. (1951). Oxalacetic decarboxylase and carbon dioxide assimilation in bacteria. Symp. Soc. exp. biol. 5, 52. Cambridge University Press. Hewitt, L. F. (1950). Oxidation-reduction potentials in bacteriology and biochemistry, 6th ed. Edinburgh : livingstone. Hill, R. (1926). The chemical nature of haemochromogen and its carbon monoxide compound. Proc. Roy. soc. 100, 419. Hill, R. (1951). Oxidoreduction in chloroplasts. Advanc. Enzymol. 12, 1. Holmberg, C. G. (1939). Uricase purification an dproperties. Biochem. J. 33, 1901. Irving, H. & Wiliams, R. J. P. (1949). Order fo stability of metal complexes. Nature, Lond., 162, 746. Irving, H. & Wiliams, R. J. P. (1953). Stability of the complexes of the divalent trasition metal ions. J. chem. Soc. (to be publ). Johnson, M. J. (1941). Isolation and properties of a pure yeast polypetidase. J. biol. Chem. 137, 575. (See also Berger, J., Johnson, M. J. & Baumann, C. A. (1941). Enzymatic hydrolysis d-peptides. J. biol. Chem. 137, 389. Berger, J. & Johnson, M. J. (1939). Metal acitvation of peptidases. J. biol. Chem. 130, 641. Berger, J. & Johnosn, M. J. (1940). The activation of dipeptidases. J. biol. Chem. 133, 639. Keilin, D. & Mann, T. (1940). Carbonic anhydrase; purification and the nature of the enzyme. Biochem. J. 34, 1163. Kertèsz, D. (1951). Tyrosinase and polyphenol-oxidase: the role of metallic ions in melanogenises. Nature, Lond., 168, 697. Klotz, I. M. (1946). the application of the law of mass action to binding by proteins. Interactions with calcium. Arch. Biochem. 9, 109. Klotz, I. M. & Curme, H. G. (1948). The thermodynamics of metall-protein combinations. Copper with bovine serum albumin. J. Amer. chem. Soc. 70, 939. Klotz, I. M. Faller, I. L. & Urquhart, J. M. (1950). Spectra fo some copper complexes with proteins, amino-acids and related substances. J. phys. Chem. 54, 18. Klotz, I. M. & Fiess, H. A. (1952). The thermodynamics of metallo-protein combinations. Comparison of copper complexes with nature protein. J. Amer. chem. Soc. 74, 887. Klotz, I. M., Urquhart, J. M. & Fiess, H. A. (1952). Interactions fo metal ions with the sulphydrll group fo seruim albumin. J. Amer. chem. Soc. 74, 5537. Kolthoff, I. M., Leussing, D. L. & Lee, T. S. (1950). Reaction of ferrous and ferric ions with 1:10 phenanthroline. III. The ferrous mono-phenantheroline complex and the colorimatric determination of phenanthroline. J. Amer. chem. Soc. 72, 2173. Kolthoff, I. M., Leussing, D. L. & Lee, T. S. (1951). Rection of ferrous and ferric ions with 1:10 phenanthroline. IV. Application ot investigation of zonc phenanthroline complexes. J. Amer. chem. Soc. 73, 390. Kmberg, A. Ochoa, S. & Mehler, A. H. (1948). Sepectrotometric studies on the decarhboxylation of βketo acids. J. biol. Chem. 174, 159. Korkes, S., del Campillo, A. & Ochoa, S. (1950). Biosynthesis of dicarboxylic acids by carbon dioxide fixation. Part IV. J. biol. Chem. 187, 891. Krebs, H. A. (1942). The effect of inorganic salts on the ketone decomposition of oxalo-acetic acid. Biochem. J. 36, 303. Krebs, H. A. & Eggleston, L. V. (1948). The metabolism of acetoacetate in animal tissues. Biochem. J. 42, 294. Kroll, H. (1952a). Managanous complexes of several amino-acids. J. Amer. chem. Soc. 74, 2034. Kroll, H. (1952b). The participation of heavy metal ions in the hydrolysis of amino-acid esters. J. Amer. chem. Soc. 74, 2036. Kubowitz, F. & Luttgens, W. (1941). zusammensetzung, Spaltung und Resynthese der Carboxylase. Biochen. Z. 307, 170. Kullgren, C. (1913). Über die Hydrolyse einiger anorganischen Salze. Z. phys. Chem. 85, 466. Lambert, R. H. (1952). Estimation of tenths of a milligram of copper by its catalytic action on the autoxidation of resorcinol. Analyt. Chem. 24, 868. Lehninger, A. L. (1950). Role of metal ions in enzyme systems. Physiol. Rev. 30, 393. Lemberg, R. & Legge, J. W. (1949). Hemitin compounds and bile pigfments. New York : Interscience. Lester Smith, E., Ball, S. & Ireland, D. M. (1952). B12 vitamins (cobalamins). 2. Neutral, basic and acidic cobalamins. Biochem. J. 52, 395. Maley, L. E. & Mellor, D. P. (1950a). The relative stability of internal metal complexes. I. Complexes of 8-hydroxy-quinolone salicylaldehyde, and acetylacetone. Aust. J. sci. Res. 2, 92. Maley, L. E. & Mellor, D. P. (1950b). The relative stability of internal metal compklexes. II. Metal derivatives of 8-hydroxyquinoline 5-sulphonic acid and a series of mono-carboxylic monoamino acids including histidine. Aust. J. sci. Res. 2, 579. Mapson, L. W. (1946). Inhibition of urease by copper salts in the presence of asdcorbic acid and related substances. Biochem. J. 40, 240. Mellor, D. P. & Goldacre, R. J. (1940). Magnetic studies of coordination compounds. J. proc. Roy. Soc. N. S. Wales, 73, 233. Mellor, D. P. & Maley, L. (1948). Order of stability of metal complexes. Nature, Lond., 161, 436. Metzler, D. E. & Snell, E. E. (1952a). Some transmination reactions involving vitamin B6,. J. Amer. chem. Soc. 74, 979. Metzler, D. E. & Snell, E. E. (1952b). Deamination of serine. I. Catalytic deamination of serine and cysteine by pyridoxal and metal salts. J. biol. Chem. 198, 353. Mills, J. E. & Mellor, D. P. (1942). Absorption spectra of para and dia magnaetic nickel complexes. J. Amer. chem. Soc. 64, 181. Moss, M. L. & Mellon, M. G. (1942). Colorimetric detemination of iron with 2.2' dipyridyl and 2.2'.2″ terpyridyl. Analyt. Chem. 14, 862. Northrop, J. H. & Kunitz, M. (1928). Combination of salts and proteins. J. gen. Physiol. 11, 481. Nossal, P. M. (1949). The spectrophotometiric examination of oxalacetate decomposition. Aust. J. exp. Biol. med. sci. 27, 313. Ochoa, S. (1948a). Biosynthesis of triacarboxylic acidsby carbon dioxide fixation. I. The preparation and properties of oxalo-succine acid. J. biol. Chem. 174, 115. Ochoa, S. (1948b). Biosynthesis of tricarboxylic acids by the carbon dioxide fixation. III. Enzymatic mechanisma. J. biol. Chem. 174, 133. Ochoa, S. (1951a). Biological mechanisms of carboxylation and decarboxylation. Physiol. Rev. 31, 56. Ochoa, S. (1951b). Biosynthesis of dicarboxylic and tricarboxylic acids by carbon dioxide fixation. Symp. Soc. exp. Biol. 5, 29. Oohoa, S. & Weisz-Tabori, E. (1948). Biosynthesis of tricarboxylic acids by carbon dioxide fixation II. Oxalo-succinic carboxylase. J. biol. Chem. 174, 123. Pauling, L. (1940). The nature of the chemical bond, pp. 92– 112. Ithaca : Cornell University Press. New York. Pauling, L. & Coryell, C. D. (1936a). The magnetic properties and structure of the hemochromogens and related substance. Proc. nat. Acad. Sci., Wash., 22, 159. Pauling, L. & Coryell, C. D. (1936b). The magnetic properties and structure of hemoglobin, oxyhemoglobin and carbonmonoxyhemoglobin. Proc. nat. Acad. Sci., Wash. 22, 210. Pedersen, K. J. (1948a). The cupric ion catalysis in the bromination of ethyl aceto-acetate. Acta chem. scand. 2, 252. Pedersen, K. J. (1948b). The catalysis by certain metal ions in the bromination of 2-carbethoxycyclopentane. Acta chem. scand. 2, 385. Pedersen, K. J. (1949). The effect of metal ions on the rate of decomposition of nitro-acetic acid. Acta chem. scand. 3, 676. Pedersen, K. J. (1952). The uncatalysed and metal ion catalysed decarboxylation of oxalacetic acid. Actra chem. scand. 6, 285. Peersen, J. J. (1952). The kinetics of the metal ion catalysed decarboxylation iof acetone dicarboxylic acid. J. chem. Soc. p. 2331. Prue, J. E. & Schwarzenbach, G. (1950). Metallkomplexe mit Polyaminen. II. Mit Triaminotriathylamin. Helv. chim. acta, 33, 963. Rawlinson, W. A. (1940). Crystalline haemocynin: some physical and chemical constrats. Aust. J. exp. biol. med. Sci. 18, 131. Rawlinson, W. A. (1941). The effect of oxidising agents on haemocyanin. Aust. J. exp. Biol. med. Sci. 19, 137. Redfield, A. C. (1930). The absorption spectra of some blood and solution containing haemocyanin. Biol. Bull. 58, 150. Redfield, A. C. (1934). The haemocyanins. Biol. Rev. 9, 175. Roche, J. & Thoai, N. V. (1950). Phosphatase alcaline. Advance. Enzymol. 10, 83. Schwarzenbach, G. (1950). Metallkomplexe mit Polyamin. III. Mit Triathylen-tetrAMIN. Helv. chim. acta. 33, 974. Schwarzenbach, G. & Freitag, E. (1951a). Komplexone. XIX. Die Bildungskonstanten von Schwermetallkomplexen der Nitrilo-triessigsäre. Helv. chim. acta, 34, 1492. Schwarzenbach, G. & Freitag, E. (1951b). Komplexone. XX. Stabilitätskonstanten von Schwermetallkomplexen der Äthylendiamin-tetraessigsfäre. Helv. chim. acta, 34, 1503. Schwarzenbach, G. & Heller, J. (1951). Komplexone. XVIII. Die Eisen II und Eisen III Komplexe der Äthyldiamin-tetraessigsäure und ihr Redoxgleichgewicht. Helv. chim. acta, 34, 576. Scott, D. A. & Fisher, A. M. (1935). Crystaline insulin. Biochem. J. 29, 1048. Smith, E. L. (1948a). The peptidases of the heart, skeletal and uterine muscle. J. biol. Chem. 173, 553. Smith, E. L. (1948b). The glycyl-glycine dipeptidases of skeletal muscle and humal uterus. J. biol. Chem. 173, 571. Smith, E. L. (1948c). Studies on dipetidases. II. Some properties of the glycyl-l-leucine peptidases of animal tissues. J. biol. Chem. 176, 9. Smith, E. L. (1948d). Studies on dipeptidases. III. Hydrocarolysis of methylated peptides: the role of cobalt in the action of glycyl-glycine dipetidases. J. biol. Chem. 176, 21. Smith, E. L. (1949). The mode of action of certian peptidases. Advance. Enzymol. 12, 191. Smith, E. L. (1951). The specificity of cerdtain peptidases. Advasnc. Enzymol. 12, 191. Smith, E. L. & Bergman, M. (1944). The peptidases of intestinal mucosa. J. biol. Chem. 153, 627. Smith, E. L. & Plollglase, W. J. (1949). The specific fo leucine-aminopeptidases. II. Optical and side-chain specificity. J. biol. Chem. 180, 1209. Speck, J. F. (1948). The effect of cations on the decarboxylation oxalo-acetic acid. J. biol. Chem. 178, 315. Steinberger, R. & Westheimer, F. H. (1951). Metal ion catalysed decarboxylation; a model for an enzyme system. J. Amer. chem. Soc. 73, 429. Stock, C. C., Perkins, M. E. & Hdellerman, L. (1938). Activation of enzymes, IV. The jack bean argininolytic enzyme. J. biol. Chem. 125, 753. Tanford, C. (1951). The effect of serum albumin on the polarographic diffusion currents of cadmium. J. Amer. chem. Soc. 73, 2066. Tanford, C. (1952). The effect of pH on the combinaiton of serum albumin with metals. J. Amer. chem. Soc. 74, 211. Tenenbaum, L. E. K. & Jensen, H. (1943). Catecholase (tyrosinase); reversible inactivation and reactivation. J. biol. Chem. 147, 27. Theorell, H. (1947). Heme-linked groups and mode of action hemoproteins. Advanc. Enzymol. 7, 265. Tthoal, N-V., Roche, J. & Roger, H. (1947). Inactivation et reactivaiton complétes de la phosphomonoesterase alcaline et interxchangeabilité des metaux actifs. Biochim. Biophys. Acta, 1, 61. Van Wazer, J. R. & Campanellad, D. A. (1950). Structre and properties of the comdesnsed phosphates. IV. complex ion formation in polyphosphate solutions. J. Amer. chem. Soc. 72, 655. Warburg, O. (1949). Heavy metal prosthetic groups. Oxford Univerwity press. Williams, R. J. P. (1950). The investigastion of the complex compounds of some metals. D. Phill. thesis Oxford. Williamrs, R. J. P. (1952). The stability of the complexes of the group IIA metal ions. J. chem. Soc. p. 3770. Williamrs, R. J. P. (1953). The metal ion catalysis of the decarboxylation of oxalacetic acid. Nature, Lond., 171, 304. Citing Literature Volume28, Issue4November 1953Pages 381-412 ReferencesRelatedInformation
Referência(s)