Revisão Revisado por pares

Pharmacological support for children with myocardial dysfunction

2002; Wiley; Volume: 12; Issue: 1 Linguagem: Inglês

10.1046/j.1460-9592.2002.00682.x

ISSN

1460-9592

Autores

P D Booker,

Tópico(s)

Heart Failure Treatment and Management

Resumo

Pediatric AnesthesiaVolume 12, Issue 1 p. 5-25 Pharmacological support for children with myocardial dysfunction† P.D BOOKER, P.D BOOKER Senior Lecturer in Paediatric Anaesthesia, University of Liverpool, Alder Hey Children's Hospital, Liverpool, UKSearch for more papers by this author P.D BOOKER, P.D BOOKER Senior Lecturer in Paediatric Anaesthesia, University of Liverpool, Alder Hey Children's Hospital, Liverpool, UKSearch for more papers by this author First published: 21 January 2002 https://doi.org/10.1046/j.1460-9592.2002.00682.xCitations: 17 P.D. Booker, Senior Lecturer in Paediatric Anaesthesia, University of Liverpool, Alder Hey Children's Hospital, Eaton Road, Liverpool L12 2AP, UK (e-mail: [email protected]). Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat References 1 Candito M, Albertinin M, Politano S et al. Plasma catecholamine levels in children. J Chromatogr 1993; 617: 304–307. 10.1016/0378-4347(93)80503-V CASPubMedWeb of Science®Google Scholar 2 Eichler I, Eichler HG, Rotter M et al. Plasma concentrations of free and sulfoconjugated dopamine, epinephrine, and norepinephrine in healthy infants and children. Klin Wochenschr 1989; 67: 672–675. 10.1007/BF01718028 CASPubMedWeb of Science®Google Scholar 3 Kogner P, Bjork O, Theodorsson E. Plasma neuropeptide Y in healthy children: influence of age, anaesthesia and the establishment of an age-adjusted reference interval. Acta Paediatr 1994; 83: 423–427. 10.1111/j.1651-2227.1994.tb18134.x CASPubMedWeb of Science®Google Scholar 4 Sun LS. Sympathetic responsiveness in the immature human myocardium. Anesth Analg 2000; 88: 390S. Google Scholar 5 Teitel DF, Sidi D, Chin T et al. Developmental changes in myocardial contractile reserve in the lamb. Pediatr Res 1985; 19: 948–955. 10.1203/00006450-198509000-00017 CASPubMedWeb of Science®Google Scholar 6 Perkin RM, Levin DL, Webb R et al. Dobutamine: a hemodynamic evaluation in children with shock. J Pediatr 1982; 100: 977–983. 10.1016/S0022-3476(82)80534-9 PubMedWeb of Science®Google Scholar 7 Park IS, Michael LH, Driscoll DJ. Comparative response of the developing canine myocardium to inotropic agents. Am J Physiol 1982; 242: H13–H18. CASPubMedWeb of Science®Google Scholar 8 Banner W, Vernon DD, Minton SD et al. Non-linear dobutamine pharmacokinetics in a pediatric population. Crit Care Med 1991; 19: 871–873. 10.1097/00003246-199107000-00008 PubMedWeb of Science®Google Scholar 9 Schwartz PH, Eldadah MK, Newth CJ. The pharmacokinetics of dobutamine in pediatric intensive care. Drug Metab Dispos 1991; 19: 614–619. CASPubMedWeb of Science®Google Scholar 10 Zaritsky A, Lotze A, Stull R et al. Steady state dopamine clearance in critically ill infants and children. Crit Care Med 1988; 16: 217–220. 10.1097/00003246-198803000-00002 CASPubMedWeb of Science®Google Scholar 11 Notterman DA, Greenwald BM, Moran F et al. Dopamine clearance in critically ill infants and children: effect of age and organ system dysfunction. Clin Pharmacol Ther 1990; 48: 138–147. 10.1038/clpt.1990.128 CASPubMedWeb of Science®Google Scholar 12 Allen E, Pettigrew A, Frank D et al. Alterations in dopamine clearance and catechol-O-methyltransferase activity by dopamine infusions in children. Crit Care Med 1997; 25: 181–189. 10.1097/00003246-199701000-00032 CASPubMedWeb of Science®Google Scholar 13 Steinberg C & Notterman DA. Pharmacokinetics of cardiovascular drugs in children. Inotropes and vasopressors. Clin Pharmacokinet 1994; 27: 345–367. 10.2165/00003088-199427050-00003 CASPubMedWeb of Science®Google Scholar 14 Ramamoorthy C, Anderson GD, Williams GD et al. Pharmacokinetics and side effects of milrinone in infants and children after open heart surgery. Anesth Analg 1998; 86: 283–289. 10.1097/00000539-199802000-00011 CASPubMedWeb of Science®Google Scholar 15 Wettrell G. Distribution and elimination of digoxin in infants. Eur J Clin Pharmacol 1977; 11: 329–335. 10.1007/BF00566529 CASPubMedWeb of Science®Google Scholar 16 Lawless S, Burckart G, Diven W et al. Amrinone in neonates and infants after cardiac surgery. Crit Care Med 1989; 17: 751–754. 10.1097/00003246-198908000-00006 PubMedWeb of Science®Google Scholar 17 Martinez AM, Padbury JF, Thio S. Dobutamine pharmacokinetics and cardiovascular responses in critically ill neonates. Pediatrics 1992; 89: 47–51. PubMedWeb of Science®Google Scholar 18 Berg RA, Donnerstein RL, Padbury JF. Dobutamine infusions in stable, critically ill children: pharmacokinetics and hemodynamic actions. Crit Care Med 1993; 21: 678–686. 10.1097/00003246-199305000-00010 PubMedWeb of Science®Google Scholar 19 Habib DM, Padbury JF, Anas NG et al. Dobutamine pharmacokinetics and pharmacodynamics in pediatric intensive care patients. Crit Care Med 1992; 20: 601–608. 10.1097/00003246-199205000-00010 CASPubMedWeb of Science®Google Scholar 20 Hein L & Kobilka BK. Adrenergic receptors. From molecular structure to in vivo function. TCM 1997; 7: 137–145. CASPubMedWeb of Science®Google Scholar 21 Kaumann AJ & Molenaar P. Modulation of human cardiac function through 4 beta-adrenoceptor populations. Naunyn Schmied Arch Pharmacol 1997; 355: 667–681. 10.1007/PL00004999 CASPubMedWeb of Science®Google Scholar 22 Kozlik R, Kramer HH, Wicht H et al. Myocardial beta-adrenoceptor density and the distribution of beta1 and beta2 subpopulations in children with congenital heart disease. Eur J Pediatr 1991; 150: 388–394. 10.1007/BF02093715 CASPubMedWeb of Science®Google Scholar 23 Sun LS, Du F, Quaegebeur JM. Right ventricular infundibular beta-adrenoceptor complex in tetralogy of Fallot patients. Pediatr Res 1997; 42: 12–16. 10.1203/00006450-199707000-00003 CASPubMedWeb of Science®Google Scholar 24 Post SR, Hilal-Dandan R, Urasawa K et al. Quantification of signalling components and amplification in the beta-adrenergic-receptor-adenylate cyclase pathway in isolated adult rat ventricular myocytes. Biochem J 1995; 311: 75–80. 10.1042/bj3110075 CASPubMedWeb of Science®Google Scholar 25 Drazner MH, Peppel KC, Dyer S et al. Potentiation of beta-adrenergic signaling by adenoviral-mediated gene transfer in adult rabbit ventricular myocytes. J Clin Invest 1997; 99: 288–296. 10.1172/JCI119157 CASPubMedWeb of Science®Google Scholar 26 Gao MH, Lai NC, Roth DM et al. Adenylyl cyclase increases responsiveness to catecholamine stimulation in transgenic mice. Circulation 1999; 99: 1618–1622. 10.1161/01.CIR.99.12.1618 CASPubMedWeb of Science®Google Scholar 27 Xiao R-P, Cheng H, Zhou Y-Y et al. Recent advances in cardiac beta-adrenergic signal transduction. Circ Res 1999; 85: 1092–1100. 10.1161/01.RES.85.11.1092 CASPubMedWeb of Science®Google Scholar 28 Kuschel M, Zhou Y-Y, Spurgeon HA et al. Beta2-adrenergic cAMP signaling is uncoupled from phosphorylation of cytoplasmic proteins in canine heart. Circulation 1999; 99: 2458–2465. 10.1161/01.CIR.99.18.2458 CASPubMedWeb of Science®Google Scholar 29 Robinson RB. Autonomic receptor-effector coupling during post-natal development. Cardiovasc Res 1996; 31: E68–E76. 10.1016/0008-6363(95)00151-4 PubMedWeb of Science®Google Scholar 30 Sun LS. Regulation of myocardial β-adrenergic receptor function in adult and neonatal rabbits. Biol Neonat 1999; 76: 181–192. 10.1159/000014157 CASPubMedWeb of Science®Google Scholar 31 Kuznetsov V, Pak E, Robinson RB et al. β2-adrenergic receptor actions in neonatal and adult rat ventricular myocytes. Circ Res 1995; 76: 40–52. 10.1161/01.RES.76.1.40 CASPubMedWeb of Science®Google Scholar 32 Bartel S, Karczewski P, Krause EG. G proteins, adenylyl cyclase and related phosphoproteins in the developing rat heart. Mol Cell Biochem 1996; 163–164: 31–38. 10.1007/BF00408638 PubMedGoogle Scholar 33 Chen F, Ding S, Lee BS et al. Sarcoplasmic reticulum Ca++-ATPase and cell contraction in developing rat heart. J Mol Cell Cardiol 2000; 32: 745–755. 10.1006/jmcc.2000.1116 CASPubMedWeb of Science®Google Scholar 34 Rapundalo ST. Cardiac protein phosphorylation: functional and pathophysiological correlates. Cardiovasc Res 1998; 38: 559–588. 10.1016/S0008-6363(98)00063-7 CASPubMedWeb of Science®Google Scholar 35 Fisher DJ, Tate CA, Phillips S. Developmental regulation of the sarcoplasmic reticulum calcium pump in the rabbit heart. Pediatr Res 1992; 31: 474–479. 10.1203/00006450-199205000-00012 CASPubMedWeb of Science®Google Scholar 36 Fisher DJ. The subcellular basis for the perinatal maturation of the cardiocyte. Curr Opin Cardiol 1994; 9: 91–96. 10.1097/00001573-199401000-00011 CASPubMedWeb of Science®Google Scholar 37 Sasse S, Brand NJ, Kyprianou P et al. Troponin I gene expression during human cardiac development and in end-stage heart failure. Circ Res 1993; 72: 932–938. 10.1161/01.RES.72.5.932 CASPubMedWeb of Science®Google Scholar 38 Borthne K, Haga P, Langslet A et al. Endogenous norepinephrine stimulates both alpha 1- and beta-adrenoceptors in myocardium from children with congenital heart defects. J Mol Cell Cardiol 1995; 27: 693–699. 10.1016/S0022-2828(08)80060-0 CASPubMedWeb of Science®Google Scholar 39 Borthne K, Haga P, Langslet A et al. Functional characterization of an ex vivo preparation of atrial myocardium from children with congenital heart defects: sensitivity to tyramine and adrenoceptor antagonists. J Cardiovasc Pharmacol 1994; 24: 365–371. 10.1097/00005344-199409000-00003 CASPubMedWeb of Science®Google Scholar 40 Autelitano DJ & Woodcock EA. Selective activation of α1A-adrenergic receptors in neonatal cardiac myocytes is sufficient to cause hypertrophy and differential regulation of α1-adrenergic receptor subtype mRNAs. J Mol Cell Cardiol 1998; 30: 1515–1523.DOI: 10.1006/jmcc.1998.0717 10.1006/jmcc.1998.0717 CASPubMedWeb of Science®Google Scholar 41 Hattori Y & Kanno M. Role of alpha1-adrenoceptor subtypes in production of the positive inotropic effects in mammalian myocardium: implications for the alpha1-adrenoceptor subtype distribution. Life Sci 1998; 62: 1449–1453. 10.1016/S0024-3205(98)00088-5 CASPubMedWeb of Science®Google Scholar 42 García-Sáinz JA, Vázquez-Prado J, Carmen Medina L. α1-adrenoceptors: function and phosphorylation. Eur J Pharmacol 2000; 389: 1–12. 10.1016/S0014-2999(99)00896-1 CASPubMedWeb of Science®Google Scholar 43 Akhter SA, Milano CA, Shotwell KF et al. Transgenic mice with cardiac overexpression of α1B-adrenergic receptors. In vivo α1-adrenergic receptor-mediated regulation of β-adrenergic signaling. J Biol Chem 1997; 272: 21253–21259. 10.1074/jbc.272.34.21253 CASPubMedWeb of Science®Google Scholar 44 Dorn GW, Tepe NM, Wu G et al. Mechanisms of impaired β-adrenergic receptor signaling in Gαq-mediated cardiac hypertrophy and ventricular dysfunction. Mol Pharmacol 2000; 57: 278–287. CASPubMedWeb of Science®Google Scholar 45 Tanaka H, Manita S, Matsuda T et al. Sustained negative inotropism mediated by alpha-adrenoreceptors in adult mouse myocardia: developmental conversion from positive response in the neonate. Br J Pharmacol 1995; 114: 673–677. 10.1111/j.1476-5381.1995.tb17191.x CASPubMedWeb of Science®Google Scholar 46 Sun LS, Rybin VO, Steinberg SF et al. Characterization of the α1-adrenergic chronotropic response in neuropeptide Y-treated cardiomyocytes. Eur J Pharmacol 1998; 349: 377–381. 10.1016/S0014-2999(98)00311-2 CASPubMedWeb of Science®Google Scholar 47 Liu QY, Karpinski E, Pang PK. Changes in alpha1-adrenoceptor coupling to Ca2+ channels during development in rat heart. FEBS Lett 1994; 338: 234–238. 10.1016/0014-5793(94)80371-4 CASPubMedWeb of Science®Google Scholar 48 Liu QY, Karpinski E, Pang PKT. The L-type calcium channel current is increased by alpha-1 adrenoceptor activation in neonatal rat ventricular cells. J Pharmacol Exp Ther 1994; 271: 935–943. CASPubMedWeb of Science®Google Scholar 49 Liu QY, Karpinski E, Pang PK. L-channel modulation by alpha-1 adrenoceptor activation in neonatal rat ventricular cells: intracellular mechanisms. J Pharmacol Exp Ther 1994; 271: 944–951. CASPubMedWeb of Science®Google Scholar 50 Rybin VO & Steinberg SF. Protein kinase C isoform expression and regulation in the developing rat heart. Circ Res 1994; 74: 299–309. 10.1161/01.RES.74.2.299 CASPubMedWeb of Science®Google Scholar 51 Sun LS, Du F, Schechter WS et al. Plasma neuropeptide Y and catecholamines in pediatric patients undergoing cardiac operations. J Thorac Cardiovasc Surg 1997; 113: 278–284. 10.1016/S0022-5223(97)70324-6 CASPubMedWeb of Science®Google Scholar 52 Dzimiri N, Galal O, Moorji A et al. Regulation of sympathetic activity in children with various congenital heart diseases. Pediatr Res 1995; 38: 55–60. 10.1203/00006450-199507000-00010 CASPubMedWeb of Science®Google Scholar 53 Wu JR, Chang HR, Huang TY et al. Reduction in lymphocyte beta-adrenergic receptor density in infants and children with heart failure secondary to congenital heart disease. Am J Cardiol 1996; 77: 170–174. 10.1016/S0002-9149(96)90590-1 CASPubMedWeb of Science®Google Scholar 54 Wu JR, Chang HR, Chen SS et al. Circulating noradrenaline and β-adrenergic receptors in children with congestive heart failure. Acta Paediatr 1996; 85: 923–927. 10.1111/j.1651-2227.1996.tb14187.x CASPubMedWeb of Science®Google Scholar 55 Kozlik-Feldmann R, Kramer HH, Wicht H et al. Distribution of myocardial beta-adrenoceptor subtypes and coupling to the adenylate cyclase in children with congenital heart disease and implications for treatment. J Clin Pharmacol 1993; 33: 588–595. 10.1002/j.1552-4604.1993.tb04709.x CASPubMedWeb of Science®Google Scholar 56 Dzimiri N. Regulation of β-adrenoceptor signaling in cardiac function and disease. Pharmacol Rev 1999; 51: 465–501. CASPubMedWeb of Science®Google Scholar 57 Reithmann C, Reber D, Kozlik-Feldmann R et al. A post-receptor defect of adenylyl cyclase in severely failing myocardium from children with congenital heart disease. Eur J Pharmacol 1997; 330: 79–86. 10.1016/S0014-2999(97)10131-5 CASPubMedWeb of Science®Google Scholar 58 Schumacher C, Becker H, Conrads R et al. Hypertrophic cardiomyopathy: a desensitized cardiac beta-adrenergic system in the presence of normal plasma catecholamine concentrations. Naunyn Schmied Arch Pharmacol 1995; 351: 398–407. 10.1007/BF00169081 CASPubMedWeb of Science®Google Scholar 59 Galal O, Dzimiri N, Moorji A et al. Sympathetic activity in children undergoing balloon valvuloplasty of pulmonary stenosis. Pediatr Res 1996; 39: 774–778. 10.1203/00006450-199605000-00005 CASPubMedWeb of Science®Google Scholar 60 Beau SL, Tolley TK, Saffitz JE. Heterogeneous transmural distribution of β-adrenergic receptor sub-types in failing human hearts. Circulation 1993; 88: 2501–2509. 10.1161/01.CIR.88.6.2501 CASPubMedWeb of Science®Google Scholar 61 Sato N, Asai K, Okumura S et al. Mechanisms of desensitization to a PDE inhibitor (milrinone) in conscious dogs with heart failure. Am J Physiol 1999; 276: H1699–H1705. 10.1152/ajpheart.1999.276.5.H1699 CASPubMedWeb of Science®Google Scholar 62 Antezana AM, Kacimi R, Le Trong JL et al. Adrenergic status of humans during prolonged exposure to the altitude of 6542 m. J Appl Physiol 1994; 76: 1055–1059. CASPubMedWeb of Science®Google Scholar 63 Richalet JP, Merlet P, Bourguignon M et al. MIBG scintigraphic assessment of cardiac adrenergic activity in response to altitude hypoxia. J Nucl Med 1990; 31: 34–37. CASPubMedWeb of Science®Google Scholar 64 Mardon K, Merlet P, Syrota A et al. Effects of 5-day hypoxia on cardiac adrenergic neurotransmission in rats. J Appl Physiol 1998; 85: 890–897. 10.1152/jappl.1998.85.3.890 CASPubMedWeb of Science®Google Scholar 65 Rocha Singh KJ, Honbo NY, Karliner JS. Hypoxia and glucose together independently regulate the β-adrenergic receptor-adenylate cyclase system in cardiac myocytes. J Clin Invest 1991; 88: 204–213. 10.1172/JCI115279 CASPubMedWeb of Science®Google Scholar 66 Bernstein D, Doshi R, Huang AH et al. Transcriptional regulation of left ventricular β-adrenergic receptors during chronic hypoxia. Circ Res 1992; 71: 1465–1471. 10.1161/01.RES.71.6.1465 CASPubMedWeb of Science®Google Scholar 67 Li HT, Long CS, Rokosh DG et al. Chronic hypoxia differentially regulates alpha 1-adrenergic receptor subtype mRNAs and inhibits alpha 1-adrenergic receptor-stimulated cardiac hypertrophy and signaling. Circulation 1995; 92: 918–925. 10.1161/01.CIR.92.4.918 CASPubMedWeb of Science®Google Scholar 68 Lai LP, Fan TH, Delehanty JM et al. Elevated myocardial interstitial norepinephrine concentration contributes to the regulation of Na+, K (+)-ATPase in heart failure. Eur J Pharmacol 1996; 309: 235–241. 10.1016/0014-2999(96)00311-1 CASPubMedWeb of Science®Google Scholar 69 Sato N, Vatner SF, Shen YT et al. Effects of cardiac denervation on development of heart failure and catecholamine desensitization. Circulation 1997; 95: 2130–2140. 10.1161/01.CIR.95.8.2130 CASPubMedWeb of Science®Google Scholar 70 Asai K, Uechi M, Sato N et al. Lack of desensitization and enhanced efficiency of calcium channel promoter in conscious dogs with heart failure. Am J Physiol 1998; 275: Η 2219–H2226. 10.1152/ajpheart.1998.275.6.H2219 CASPubMedWeb of Science®Google Scholar 71 Wong HR, Carcillo JA, Burckhart G et al. Increased serum nitrite and nitrate concentrations in children with the sepsis syndrome. Crit Care Med 1995; 23: 835–842. 10.1097/00003246-199505000-00010 CASPubMedWeb of Science®Google Scholar 72 Joe EK, Schussheim AE, Longrois D et al. Regulation of cardiac myocyte contractile function by inducible nitric oxide synthase: mechanisms of contractile depression by nitric oxide. J Mol Cell Cardiol 1998; 30: 303–315. 10.1006/jmcc.1997.0593 CASPubMedWeb of Science®Google Scholar 73 Weingartner R, Oliveira E, Oliveira ES et al. Blockade of the action of nitric oxide in human septic shock increases systemic vascular resistance and has detrimental effects on pulmonary function after a short infusion of methylene blue. Braz J Med Biol Res 1999; 32: 1505–1513. 10.1590/S0100-879X1999001200009 CASPubMedWeb of Science®Google Scholar 74 McDonough KH, Smith T, Patel K et al. Myocardial dysfunction in the septic rat heart: role of nitric oxide. Shock 1998; 10: 371–376. 10.1097/00024382-199811000-00011 CASPubMedWeb of Science®Google Scholar 75 Sibelius U, Grandel U, Buerke M et al. Staphylococcal alpha-toxin provokes coronary vasoconstriction and loss in myocardial contractility in perfused rat hearts: role of thromboxane generation. Circulation 2000; 101: 78–85. 10.1161/01.CIR.101.1.78 CASPubMedWeb of Science®Google Scholar 76 Hunter J. Sepsis – the heart of the matter. Br J Cardiol 2000; 7: 505–511. Google Scholar 77 Boillot A, Massol J, Maupoil V et al. Myocardial and vascular adrenergic alterations in a rat model of endotoxic shock: reversal by an anti-tumor necrosis factor-alpha monoclonal antibody. Crit Care Med 1997; 25: 504–511. 10.1097/00003246-199703000-00021 CASPubMedWeb of Science®Google Scholar 78 Silverman HJ, Penaranda R, Orens JB et al. Impaired beta-adrenergic receptor stimulation of cyclic adenosine monophosphate in human septic shock: association with myocardial hyporesponsiveness to catecholamines. Crit Care Med 1993; 21: 31–39. 10.1097/00003246-199301000-00010 CASPubMedWeb of Science®Google Scholar 79 Muller-Werdan U, Schumann H, Loppnow H et al. Endotoxin and tumor necrosis factor α exert a similar proinflammatory effect in neonatal rat cardiomyocytes, but have different cardiodepressant profiles. J Mol Cell Cardiol 1998; 30: 1027–1036. 10.1006/jmcc.1998.0667 CASPubMedWeb of Science®Google Scholar 80 Smiley RM, Kwatra MM, Schwinn DA. New developments in cardiovascular adrenergic receptor pharmacology: molecular mechanisms and clinical relevance. J Cardiothorac Vasc Anesth 1998; 12: 80–95. 10.1016/S1053-0770(98)90062-3 CASPubMedWeb of Science®Google Scholar 81 Zhang J, Barak LS, Winkler KE et al. A central role for β-arrestins and clathrin-coated vesicle-mediated endocytosis in β2-adrenergic receptor resensitization: differential regulation of receptor resensitization in two distinct cell types. J Biol Chem 1997; 272: 27005–27014. 10.1074/jbc.272.43.27005 CASPubMedWeb of Science®Google Scholar 82 Giannuzzi CE, Seidler FJ, Slotkin TA. Beta-adrenoceptor control of cardiac adenylyl cyclase during development: agonist pre-treatment in the neonate uniquely causes heterologous sensitization, not desensitization. Brain Res 1995; 694: 271–278. 10.1016/0006-8993(95)00781-K CASPubMedWeb of Science®Google Scholar 83 Zeiders JL, Seidler FJ, Slotkin TA. Agonist-induced sensitization of β-adrenoceptor signaling in neonatal rat heart: expression and catalytic activity of adenylyl cyclase. J Pharmacol Exp Ther 1999; 291: 503–510. CASPubMedWeb of Science®Google Scholar 84 Zeiders JL, Seidler FJ, Iaccarino G et al. Ontogeny of cardiac beta-adrenoceptor desensitization mechanisms: agonist treatment enhances receptor/G-protein transduction rather than eliciting uncoupling. J Mol Cell Cardiol 1999; 31: 413–423.DOI: 10.1006/jmcc.1998.0875 10.1006/jmcc.1998.0875 CASPubMedWeb of Science®Google Scholar 85 Zeiders JL, Seidler FJ, Slotkin TA. Ontogeny of regulatory mechanisms for beta-adrenoceptor control of rat cardiac adenylyl cyclase: targeting of G-proteins and the cyclase catalytic subunit. J Mol Cell Cardiol 1997; 29: 603–615.DOI: 10.1006/jmcc.1996.0303 10.1006/jmcc.1996.0303 CASPubMedWeb of Science®Google Scholar 86 Zeiders JL, Seidler FJ, Slotkin TA. Ontogeny of G-protein expression: control by beta-adrenoceptors. Brain Res Dev Brain Res 2000; 120: 125–134. 10.1016/S0165-3806(99)00188-1 CASPubMedWeb of Science®Google Scholar 87 Smith CJ, Ricketts SG, Ding JZ et al. Downregulation of right ventricular phosphodiesterase PDE-3A mRNA and protein before the development of canine heart failure. Cell Biochem Biophys 1998; 29: 67–88. 10.1007/BF02737829 CASPubMedWeb of Science®Google Scholar 88 Müller FU, Boheler KR, Eschenhagen T et al. Isoprenaline stimulates gene transcription of the inhibitory G protein alpha-subunit Gi alpha-2 in rat heart. Circ Res 1993; 72: 696–700. 10.1161/01.RES.72.3.696 CASPubMedWeb of Science®Google Scholar 89 Eschenhagen T, Mende U, Diederich M et al. Long term beta-adrenoceptor-mediated up-regulation of Gi alpha and G (o) alpha mRNA levels and pertussis toxin-sensitive guanine nucleotide-binding proteins in rat heart. Mol Pharmacol 1992; 42: 773–783. CASPubMedWeb of Science®Google Scholar 90 Eschenhagen T, Mende U, Nose M et al. Increased messenger RNA level of the inhibitory G protein alpha subunit Gi alpha-2 in human end-stage heart failure. Circ Res 1992; 70: 688–696. 10.1161/01.RES.70.4.688 CASPubMedWeb of Science®Google Scholar 91 Lai LP, Suematsu M, Elam H et al. Differential changes of myocardial beta-adrenoceptor subtypes and G-proteins in dogs with right-sided congestive heart failure. Eur J Pharmacol 1996; 309: 201–208. 10.1016/0014-2999(96)00340-8 CASPubMedWeb of Science®Google Scholar 92 Iaccarino G, Tomhave ED, Lefkowitz RJ et al. Reciprocal in vivo regulation of myocardial G protein-coupled receptor kinase expression by beta-adrenergic receptor stimulation and blockade. Circulation 1998; 98: 1783–1789. 10.1161/01.CIR.98.17.1783 CASPubMedWeb of Science®Google Scholar 93 Ungerer M, Parruti G, Böhm M et al. Expression of beta-arrestins and beta-adrenergic receptor kinases in the failing human heart. Circ Res 1994; 74: 206–213. 10.1161/01.RES.74.2.206 CASPubMedWeb of Science®Google Scholar 94 Ping P, Anzai T, Gao M et al. Adenylyl cyclase and G protein receptor kinase expression during development of heart failure. Am J Physiol 1997; 273: Η 707–H717. CASPubMedWeb of Science®Google Scholar 95 Akhter SA, Eckhart AD, Rockman HA et al. In vivo inhibition of elevated myocardial beta-adrenergic receptor kinase activity in hybrid transgenic mice restores normal beta-adrenergic signaling and function. Circulation 1999; 100: 648–653. 10.1161/01.CIR.100.6.648 CASPubMedWeb of Science®Google Scholar 96 Carman CV, Lisanti MP, Benovic JL. Regulation of G protein-coupled receptor kinases by caveolin. J Biol Chem 1999; 274: 8858–8864. 10.1074/jbc.274.13.8858 CASPubMedWeb of Science®Google Scholar 97 Oka N, Asai K, Kudej RK et al. Downregulation of caveolin by chronic β-adrenergic receptor stimulation in mice. Am J Physiol 1997; 273: X1957–X1962. 10.1152/ajpcell.1997.273.6.C1957 CASPubMedWeb of Science®Google Scholar 98 Wallukat G, Kayser A, Wollenberger A. The beta 1-adrenoceptor as antigen: functional aspects. Eur Heart J 1995; 16: 85–88. 10.1093/eurheartj/16.suppl_O.85 CASPubMedWeb of Science®Google Scholar 99 Lebesgue D, Wallukat G, Mijares A et al. An agonist-like monoclonal antibody against the human beta 2-adrenoceptor. Eur J Pharmacol 1998; 348: 123–133. 10.1016/S0014-2999(98)00136-8 CASPubMedWeb of Science®Google Scholar 100 Podlowski S, Luther HP, Morwinski R et al. Agonistic anti-beta 1-adrenergic receptor autoantibodies from cardiomyopathy patients reduce the beta 1-adrenergic receptor expression in neonatal rat cardiomyocytes. Circulation 1998; 98: 2470–2476. 10.1161/01.CIR.98.22.2470 CASPubMedWeb of Science®Google Scholar 101 Wallukat G, Müller J, Podlowski S et al. Agonist-like beta-adrenoceptor antibodies in heart failure. Am J Cardiol 1999; 83: 75H–79H. 10.1016/S0002-9149(99)00265-9 CASPubMedWeb of Science®Google Scholar 102 Ogawa S, Barnett JV, Sen L et al. Direct contact between sympathetic neurons and rat cardiac myocytes in vitro increases expression of functional calcium channels. J Clin Invest 1992; 89: 1085–1093. 10.1172/JCI115688 CASPubMedWeb of Science®Google Scholar 103 Maki T, Gruver EJ, Davidoff AJ et al. Regulation of calcium channel expression in neonatal myocytes by catecholamines. J Clin Invest 1996; 97: 656–663. 10.1172/JCI118462 CASPubMedWeb of Science®Google Scholar 104 Takahashi T, Allen PD, Lacro RV et al. Expression of dihydropyridine receptor (Ca++ channel) and calsequestrin genes in the myocardium of patients with end-stage failure. J Clin Invest 1992; 90: 927–935. 10.1172/JCI115969 CASPubMedWeb of Science®Google Scholar 105 Muth JN, Yamaguchi H, Mikala G et al. Cardiac-specific overexpression of the α1 subunit of the L-type voltage-dependent Ca++ channel in transgenic mice. Loss of isoproterenol-induced contraction. J Biol Chem 1999; 274: 21503–21506. 10.1074/jbc.274.31.21503 CASPubMedWeb of Science®Google Scholar 106 Golden KL, Fan QI, Chen B et al. Adrenergic stimulation regulates Na+/Ca++ exchanger expression in rat cardiac myocytes. J Mol Cell Cardiol 2000; 32: 611–620.DOI: 10.1006/jmcc.2000.1104 10.1006/jmcc.2000.1104 CASPubMedWeb of Science®Google Scholar 107 Lai LP, Raju VS, Delehanty JM et al. Altered sarcoplasmic reticulum Ca++-ATPase gene expression in congestive heart failure: effect of chronic norepinephrine infusion. J Mol Cell Cardiol 1998; 30: 175–185. 10.1006/jmcc.1997.0583 CASPubMedWeb of Science®Google Scholar 108 Communal C, Singh K, Pimentel DR et al. Norepinephrine stimulates apoptosis in adult rat ventricular myocytes by activation of the beta-adrenergic pathway. Circulation 1998; 98: 1329–1334. 10.1161/01.CIR.98.13.1329 CASPubMedWeb of Science®Google Scholar 109 Iwai-Kanai E, Hasegawa K, Araki M et al. Alpha- and beta-adrenergic pathways differentially regulate cell type-specific apoptosis in rat cardiac myocytes. Circulation 1999; 100: 305–311. 10.1161/01.CIR.100.3.305 CASPubMedWeb of Science®Google Scholar 110 Hausdorf G, Friedel N, Berdjis F et al. Enoximone in newborns with refractory postoperative low-output states (LOS). Eur J Cardiothorac Surg 1992; 6: 311–317. 10.1016/1010-7940(92)90148-Q PubMedWeb of Science®Google Scholar 111 Hausdorf G. Experience with phosphodiesterase inhibitors in paediatric cardiac surgery. Eur J Anaesth 1993; 10: 25–30. Web of Science®Google Scholar 112 Akita T, Joyner RW, Lu C et al. Developmental changes in modulation of calcium currents of rabbit ventricular cells by phosphodiesterase inhibitors. Circulation 1994; 90: 469–478. 10.1161/01.CIR.90.1.469 CASPubMedWeb of Science®Google Scholar 113 Baim DS. Effect of phosphodiesterase inhibition on myocardial oxygen consumption and coronary blood flow. Am J Cardiol 1989; 63: 23A–26A. 10.1016/0002-9149(89)90388-3 CASPubMedWeb of Science®Google Scholar 114 Herrmann HC, Ruddy TD, December GW et al. Diastolic function in patients with severe heart failure: comparison of the effects of enoximone and nitroprusside. Circulation 1987; 75: 1214–1221. 10.1161/01.CIR.75.6.1214 CASPubMedWeb of Science®Google Scholar 115 Vandeplassche GM, Hermans CF, De Chaffoy de Courcelles DR et al. Comparative effects of R 80122, enoximone and milrinone on left ventricular phosphodiesterase isoenzymes in vitro and on contractility of normal and stunned myocardium in vivo in dogs. J Cardiovasc Pharmacol 1992; 19: 714–722. 10.1097/00005344-199205000-00009 CASPubMedWeb of Science®Google Scholar 116 Skoyles JR & Sherry KM. Pharmacology, mechanisms of a

Referência(s)
Altmetric
PlumX