Multidimensional Numerical Noise from Captured Shock Wave and Its Cure
2013; American Institute of Aeronautics and Astronautics; Volume: 51; Issue: 4 Linguagem: Inglês
10.2514/1.j052046
ISSN1533-385X
Autores Tópico(s)Fluid Dynamics and Turbulent Flows
ResumoNo AccessTechnical NoteMultidimensional Numerical Noise from Captured Shock Wave and Its CureEiji Shima and Keiichi KitamuraEiji ShimaJEDI Center, Japan Aerospace Exploration Agency, Sagamihara 252-5210, Japan*Senior Researcher and Director, JEDI Center, 3-1-1 Yoshinodai, Chuo. Member AIAA.Search for more papers by this author and Keiichi KitamuraJEDI Center, Japan Aerospace Exploration Agency, Sagamihara 252-5210, Japan†Research Fellow, JSPS, JEDI Center; currently Assistant Professor at Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan. Member AIAA (Corresponding Author).Search for more papers by this authorPublished Online:23 Mar 2013https://doi.org/10.2514/1.J052046SectionsView Full TextPDFPDF Plus ToolsAdd to favoritesDownload citationTrack citations ShareShare onFacebookTwitterLinked InRedditEmail About References [1] Peery K. M. and Imlay S. T., “Blunt-Body Flow Simulations,” AIAA Paper 88-2904, 1988. LinkGoogle Scholar[2] Pandolfi M. and D’Ambrosio D., “Numerical Instabilities in Upwind Methods: Analysis and Cures for the Carbuncle Phenomenon,” Journal of Computational Physics, Vol. 166, No. 2, 2001, pp. 271–301. doi:https://doi.org/10.1006/jcph.2000.6652 JCTPAH 0021-9991 CrossrefGoogle Scholar[3] Kitamura K., Roe P. and Ismail F., “Evaluation of Euler Fluxes for Hypersonic Flow Computations,” AIAA Journal, Vol. 47, No. 1, 2009, pp. 44–53. doi:https://doi.org/10.2514/1.33735 AIAJAH 0001-1452 LinkGoogle Scholar[4] Kitamura K., Shima E., Nakamura Y. and Roe P., “Evaluation of Euler Fluxes for Hypersonic Heating Computations,” AIAA Journal, Vol. 48, No. 4, 2010, pp. 763–776. doi:https://doi.org/10.2514/1.41605 AIAJAH 0001-1452 LinkGoogle Scholar[5] Kitamura K., Shima E. and Roe P., “Carbuncle Phenomena and Other Shock Anomalies in Three Dimensions,” AIAA Journal, Vol. 50, No. 12, 2012, pp. 2655–2669. doi:https://doi.org/10.2514/1.J051227 LinkGoogle Scholar[6] Zaide D. and Roe P. L., “Shock Capturing Anomalies and the Jump Conditions in One Dimension,” AIAA Paper 2011-3686, 2011. LinkGoogle Scholar[7] Quirk J. J., “A Contribution to the Great Riemann Solver Debate,” International Journal for Numerical Methods in Fluids, Vol. 18, No. 6, 1994, pp. 555–574. doi:https://doi.org/10.1002/fld.1650180603 IJNFDW 0271-2091 CrossrefGoogle Scholar[8] Arora M. and Roe P. L., “On Postshock Oscillations due to Shock Capturing Schemes in Unsteady Flows,” Journal of Computational Physics, Vol. 130, No. 1, 1997, pp. 25–40. doi:https://doi.org/10.1006/jcph.1996.5534 JCTPAH 0021-9991 CrossrefGoogle Scholar[9] Jin S. and Liu J. G., “The Effects of Numerical Viscosities, I. Slowly Moving Shocks,” Journal of Computational Physics, Vol. 126, No. 2, 1996, pp. 373–389. doi:https://doi.org/10.1006/jcph.1996.0144 JCTPAH 0021-9991 CrossrefGoogle Scholar[10] Johnsen E., Lele S. K. and Larsson J., “Analysis and Correction of Errors Generated by Slowly Moving Shocks,” AIAA Paper 2011-657, 2011. LinkGoogle Scholar[11] Liou M. S., “Open Problems in Numerical Fluxes: Proposed Resolutions,” AIAA Paper 2011-3055, 2011. Google Scholar[12] Roe P. L., Nishikawa H., Ismail F. and Scalabrin L., “On Carbuncles and Other Excrescences,” AIAA Paper 2005-4872, 2005. LinkGoogle Scholar[13] Nishikawa H. and Kitamura K., “Very Simple, Carbuncle-Free, Boundary-Layer Resolving, Rotated-Hybrid Riemann Solvers,” Journal of Computational Physics, Vol. 227, No. 4, 2008, pp. 2560–2581. doi:https://doi.org/10.1016/j.jcp.2007.11.003 JCTPAH 0021-9991 CrossrefGoogle Scholar[14] Ren Y.-X., “A Robust Shock-Capturing Scheme Based on Rotated Riemann Solvers,” Computers and Fluids, Vol. 32, No. 10, 2003, pp. 1379–1403. doi:https://doi.org/10.1016/S0045-7930(02)00114-7 CPFLBI 0045-7930 CrossrefGoogle Scholar[15] Levy D. W., Powell K. G. and van Leer B., “Use of a Rotated Riemann Solver for the Two-Dimensional Euler Equations,” Journal of Computational Physics, Vol. 106, No. 2, 1993, pp. 201–214. doi:https://doi.org/10.1016/S0021-9991(83)71103-4 JCTPAH 0021-9991 CrossrefGoogle Scholar[16] Huang K., Wu H., Yu H. and Yan D., “Cures for Numerical Shock Instability in HLLC Solver,” International Journal for Numerical Methods in Fluids, Vol. 65, No. 9, 2011, pp. 1026–1038. doi:https://doi.org/10.1002/fld.2217 IJNFDW 0271-2091 CrossrefGoogle Scholar[17] Shen Y., Zha G. and Huerta M. A., “Rotated Hybrid Low Diffusion ECUSP-HLL scheme and Its Applications to Hypersonic Flows,” AIAA Paper 2011-3545, 2011. Google Scholar[18] Loh C. Y. and Jorgenson P. C. E., “Multi-Dimensional Dissipation for Cure of Pathological Behaviors of Upwind Scheme,” Journal of Computational Physics, Vol. 228, No. 5, 2009, pp. 1343–1346. doi:https://doi.org/10.1016/j.jcp.2008.10.044 JCTPAH 0021-9991 CrossrefGoogle Scholar[19] Gnoffo P. A., “Multidimensional, Inviscid Flux Reconstruction for Simulation of Hypersonic Heating on Tetrahedral Grids,” AIAA Paper 2009-599, 2009. Google Scholar[20] Roe P. L., “Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes,” Journal of Computational Physics, Vol. 43, No. 2, 1981, pp. 357–372. doi:https://doi.org/10.1016/0021-9991(81)90128-5 JCTPAH 0021-9991 CrossrefGoogle Scholar[21] Shima E. and Jonouchi T., “Role of CFD in Aeronautical Engineering (No. 14)—AUSM Type Upwind Schemes,” Proceedings of 13th NAL Symposium on Aircraft Computational Aerodynamics, SP30, National Aerospace Lab., Tokyo, 1996, pp. 41–46. Google Scholar[22] Liou M. S., “Mass Flux Schemes and Connection to Shock Instability,” Journal of Computational Physics, Vol. 160, 2000, pp. 623–648. doi:https://doi.org/10.1006/jcph.2000.6478 JCTPAH 0021-9991 CrossrefGoogle Scholar[23] Kim K. H., Kim C. and Rho O. H., “Methods for the Accurate Computations of Hypersonic Flows 1: AUSMPW+ Scheme,” Journal of Computational Physics, Vol. 174, No. 1, 2001, pp. 38–80. doi:https://doi.org/10.1006/jcph.2001.6873 JCTPAH 0021-9991 CrossrefGoogle Scholar[24] Kim S. S., Kim C., Rho O. H. and Hong S. K., “Cures for the Shock Instability: Development of a Shock-Stable Roe Scheme,” Journal of Computational Physics, Vol. 185, No. 2, 2003, pp. 342–374. doi:https://doi.org/10.1016/S0021-9991(02)00037-2 JCTPAH 0021-9991 CrossrefGoogle Scholar[25] van Leer B., “Towards the Ultimate Conservative Difference Scheme 5: A Second-Order Sequel to Godunov’s Method,” Journal of Computational Physics, Vol. 32, No. 1, 1979, pp. 101–136. doi:https://doi.org/10.1016/0021-9991(79)90145-1 JCTPAH 0021-9991 CrossrefGoogle Scholar[26] Shima E. and Kitamura K., “Parameter-Free Simple Low-Dissipation AUSM-Family Scheme for All Speeds,” AIAA Journal, Vol. 49, No. 8, 2011, pp. 1693–1709. doi:https://doi.org/10.2514/1.J050905 AIAJAH 0001-1452 LinkGoogle Scholar[27] Liou M. S., “A Sequel to AUSM: AUSM+,” Journal of Computational Physics, Vol. 129, No. 2, 1996, pp. 364–382. doi:https://doi.org/10.1006/jcph.1996.0256 JCTPAH 0021-9991 CrossrefGoogle Scholar[28] Liou M. S., “A Sequel to AUSM, Part II: AUSM+-Up for All Speeds,” Journal of Computational Physics, Vol. 214, No. 1, 2006, pp. 137–170. doi:https://doi.org/10.1016/j.jcp.2005.09.020 JCTPAH 0021-9991 CrossrefGoogle Scholar[29] Harten A., “High Resolution Schemes for Hyperbolic Conservation Laws,” Journal of Computational Physics, Vol. 49, No. 3, 1983, pp. 357–393. doi:https://doi.org/10.1016/0021-9991(83)90136-5 JCTPAH 0021-9991 CrossrefGoogle Scholar[30] Yoon S. and Jameson A., “Lower-Upper Symmetric-Gauss-Seidel Method for the Euler and Navier–Stokes Equations,” AIAA Journal, Vol. 26, No. 30, 1988, pp. 1025–1026. doi:https://doi.org/10.2514/3.10007 AIAJAH 0001-1452 LinkGoogle Scholar[31] van Albada G. D., van Leer B. and Roberts W. W., “A Comparative Study of Computational Methods in Cosmic Gas Dynamics,” Astronomy and Astrophysics, Vol. 108, No. 1, 1982, pp. 76–84. AAEJAF 0004-6361 Google Scholar[32] Barth T. J., “Some Notes on Shock-Resolving Flux Functions Part 1: Stationary Characteristics,” NASA TM-101087, 1989. Google Scholar[33] Chauvat Y., Moschetta J. M. and Gressier J., “Shock Wave Numerical Structure and the Carbuncle Phenomenon,” International Journal for Numerical Methods in Fluids, Vol. 47, Nos. 8–9, 2005, pp. 903–909. doi:https://doi.org/10.1002/fld.916 IJNFDW 0271-2091 CrossrefGoogle Scholar[34] Roe P. L., “Fluctuations and Signals—A Framework for Numerical Evolution Problems,” Numerical Methods for Fluid Dynamics, edited by Morton K. W. and Baines M. J., Academic Press, New York, 1982, pp. 232–236. Google Scholar[35] Esquivel A., Raga A. C., Cantó J., Rodríguez-González A., López-Cámara D., Velázquez P. F. and De Colle F., “Model of Mira’s Cometary Head/Tail Entering the Local Bubble,” Astrophysical Journal, Vol. 725, 2010, pp. 1466–1475. doi:https://doi.org/10.1088/0004-637X/725/2/1466 ASJOAB 0004-637X CrossrefGoogle Scholar[36] Kitamura K. and Shima E., “A New Pressure Flux for AUSM-Family Schemes for Hypersonic Heating Computations,” AIAA Paper 2011-3056, 2011. LinkGoogle Scholar Previous article Next article
Referência(s)