Charles Darwin, embryology, evolution and skeletal plasticity
2010; Wiley; Volume: 26; Issue: 2 Linguagem: Inglês
10.1111/j.1439-0426.2010.01394.x
ISSN1439-0426
Autores Tópico(s)Fish Biology and Ecology Studies
ResumoJournal of Applied IchthyologyVolume 26, Issue 2 p. 148-151 Charles Darwin, embryology, evolution and skeletal plasticity B. K. Hall, B. K. Hall Department of Biology, Dalhousie University, Halifax Canada and School of Life Sciences, Arizona State University, Tempe, AZ, USASearch for more papers by this author B. K. Hall, B. K. Hall Department of Biology, Dalhousie University, Halifax Canada and School of Life Sciences, Arizona State University, Tempe, AZ, USASearch for more papers by this author First published: 13 April 2010 https://doi.org/10.1111/j.1439-0426.2010.01394.xCitations: 9 Author's address: Brian K. Hall, Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada.E-mail: [email protected] Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Summary Darwin provided us with the theory of evolutionary change through natural selection. Just as important to the science of biology was Darwin's recognition that all organisms could be classified and were related to one another because they arose from a single common universal ancestor – what we know as the universal tree of life (UtoL). All the features of the skeletal biology of fish therefore can be explained, both in an evolutionary framework (ultimate causation) and in the framework of development, growth and physiology (proximate causation). Neither approach is complete without the other. I will outline the elements of Darwin's theories on evolution and classification and, as importantly, discuss what was missing from Darwin's theories. An important class of evidence for evolution used by Darwin came from embryology, both comparative embryology and the existence of vestiges and atavisms. After discussing this evidence I examine some fundamental features of skeletal development and evolution These include: the presence of four skeletal systems in all vertebrates; the existence of two skeletons, one based on cartilage, the other on bone and dentine; the modular nature of skeletal development and evolution; and the plasticity of the skeleton in response to either genetic or environmental changes. References Cole, A. G.; Hall, B. K., 2004a: Cartilage is a metazoan tissue; integrating data from non-vertebrate sources. Acta Zool. 85, 69– 80. Cole, A. G.; Hall, B. K., 2004b: The nature and significance of invertebrate cartilages revisited: distribution and histology of cartilage and cartilage-like tissues within the Metazoa. Zoology 107, 261– 274. Darwin, C. R., 1845: Journal of researches into the natural history and geology of the countries visited during the voyage of H.M.S. Beagle round the world, under the Command of Capt. Fitz Roy. R.N. John Murray, London, UK. Darwin, C. R., 1859: On the origin of species by means of natural selection or the preservation of favoured races in the struggle for life. John Murray, London, UK. Gass, G.; Hall, B. K., 2007: collectivity in context: modularity, cell sociology and the neural crest. Biol. Theory 2, 349– 359. Hall, B. K., 2005: Bones and cartilage: developmental and evolutionary skeletal biology. Elsevier Academic Press, London, pp. 787. Hall, B. K., 2009: The neural crest and neural crest cells in vertebrate development and evolution. Springer, New York, xxii + pp. 400. Hall, B. K.; Witten, P. E., 2007: The origin and plasticity of skeletal tissues in vertebrate evolution and development. In: Major transitions in vertebrate evolution. S. J. Anderson and H.-D. Sues (Eds). Festschrift for Dr. Robert L. Carroll. Indiana University Press, Bloomington, IN, USA. pp. 13– 57. De Maupertuis, P. L. M. 1745: Venus physique. La Haye, The Hague. Miller, C. T.; Schilling, T. F.; Lee, K.-H.; Parker, J.; Kimmel, C. B., 2000: Sucker encodes a zebrafish endothelin-1 required for ventral pharyngeal arch development. Development 127, 3815– 3828. Patterson, C.; Johnson, G. D., 1995: The intermuscular bones and ligaments of teleostean fishes. Smithson. Contrib. Zool., 559, 1– 83. Piotrowski, T.; Schilling, T. F.; Brand, M.; Jiang, Y.-J.; Heisenberg, C.-P.; Beuchle, D.; Grandel, H.; Van Eeden, F. J. M.; Furutani-Seiki, M.; Granato, M.; Haffter, P.; Hammerschmidt, M.; Kane, D. A.; Kelsh, R. N.; Mullins, M. C.; Odenthal, J.; Warga, R. M.; Nüsslein-Volhard, C., 1996: Jaw and branchial arch mutants in zebrafish. II: anterior arches and cartilage differentiation. Development 123, 345– 356. Quammen, D., 2006: The reluctant Mr. Darwin. W. W. Norton, New York, pp. 304. Rouse, G. W.; Goffredi, S. K.; Vrijenhoek, R. C., 2004: Osedax: bone-eating marine worms with dwarf males. Science 305, 668– 671. Schilling, T. F.; Piotrowski, T.; Grandel, H.; Brand, M.; Heisenberg, C. -P.; Jiang, Y. -J.; Beuchle, D.; Hammerschmidt, M.; Kane, D. A.; Mullins, M. C.; Eeden, F. J. M.; Kelsh, R. N.; Furutani-Seiki, M.; Granato, M.; Haffter, P.; Odenthal, J.; Warga, R. M.; Trowe, T.; Nüsslein-Volhard, C., 1996a: Jaw and branchial arch mutants in zebrafish. I: branchial arches. Development 121, 329– 344. Schilling, T. F.; Walker, C.; Kimmel, C. B., 1996b: The Chinless mutation and neural crest cell-interactions in zebrafish jaw development. Development 122, 1417– 1426. Smith, M. M.; Hall, B. K., 1990: Developmental and evolutionary origins of vertebrate skeletogenic and odontogenic tissues. Biol. Rev. 65, 277– 374. Smith, M. M.; Hall, B. K., 1993: A developmental model for evolution of the vertebrate exoskeleton and teeth: the role of cranial and trunk neural crest. J. Evol. Biol. 27, 387– 448. Vickaryous, M.; Hall, B. K., 2008: Development of the dermal skeleton in Alligator mississippiensis (Archosauria, Crocodylia) with comments on the homology of osteoderms. J. Morphol. 269, 398– 422. Citing Literature Volume26, Issue2April 2010Pages 148-151 ReferencesRelatedInformation
Referência(s)