Artigo Acesso aberto Revisado por pares

Establishment of the Dorso-ventral Axis in Xenopus Embryos Is Presaged by Early Asymmetries in β-Catenin That Are Modulated by the Wnt Signaling Pathway

1997; Rockefeller University Press; Volume: 136; Issue: 5 Linguagem: Inglês

10.1083/jcb.136.5.1123

ISSN

1540-8140

Autores

Carolyn A. Larabell, Monica A. Torres, Brian A. Rowning, Cynthia Yost, Jeffrey R. Miller, Mike Wu, David Kimelman, Randall T. Moon,

Tópico(s)

Axon Guidance and Neuronal Signaling

Resumo

Eggs of Xenopus laevis undergo a postfertilization cortical rotation that specifies the position of the dorso-ventral axis and activates a transplantable dorsal-determining activity in dorsal blastomeres by the 32-cell stage. There have heretofore been no reported dorso-ventral asymmetries in endogenous signaling proteins that may be involved in this dorsal-determining activity during early cleavage stages. We focused on β-catenin as a candidate for an asymmetrically localized dorsal-determining factor since it is both necessary and sufficient for dorsal axis formation. We report that β-catenin displays greater cytoplasmic accumulation on the future dorsal side of the Xenopus embryo by the two-cell stage. This asymmetry persists and increases through early cleavage stages, with β-catenin accumulating in dorsal but not ventral nuclei by the 16- to 32cell stages. We then investigated which potential signaling factors and pathways are capable of modulating the steady-state levels of endogenous β-catenin. Steadystate levels and nuclear accumulation of β-catenin increased in response to ectopic Xenopus Wnt-8 (Xwnt-8) and to the inhibition of glycogen synthase kinase-3, whereas neither Xwnt-5A, BVg1, nor noggin increased β-catenin levels before the mid-blastula stage. As greater levels and nuclear accumulation of β-catenin on the future dorsal side of the embryo correlate with the induction of specific dorsal genes, our data suggest that early asymmetries in β-catenin presage and may specify dorso-ventral differences in gene expression and cell fate. Our data further support the hypothesis that these dorso-ventral differences in β-catenin arise in response to the postfertilization activation of a signaling pathway that involves Xenopus glycogen synthase kinase-3.

Referência(s)