Artigo Revisado por pares

A Survey of Methods for Rational Approximation, with Particular Reference to a New Method Based on a Forumla of Darboux

1963; Society for Industrial and Applied Mathematics; Volume: 5; Issue: 3 Linguagem: Inglês

10.1137/1005065

ISSN

1095-7200

Autores

E. W. Cheney, Thomas H. Southard,

Tópico(s)

Numerical Methods and Algorithms

Resumo

Previous article Next article A Survey of Methods for Rational Approximation, with Particular Reference to a New Method Based on a Forumla of DarbouxE. W. Cheney and T. H. SouthardE. W. Cheney and T. H. Southardhttps://doi.org/10.1137/1005065PDFBibTexSections ToolsAdd to favoritesExport CitationTrack CitationsEmail SectionsAbout[1] N. I. Achieser, Theory of approximation, Translated by Charles J. Hyman, Frederick Ungar Publishing Co., New York, 1956x+307 MR0095369 0072.28403 Google Scholar[2] D. Jackson, The Theory of Approximation, Vol. XI, Amer. Math. Soc. Colloquium Publications, New York, 1930 Google Scholar[3] G. Darboux, Sur les Développements en Série des Functions d'une Seule Variable, J. Math. Purer Appl., 41 (1876), 291–312 Google Scholar[4] E. T. Whittaker and , G. N. Watson, A Course of Modern Analysis, Cambridge, 1950 Google Scholar[5] P. M. Hummel and , C. L. Seebeck, Jr., A generalization of Taylor's expansion, Amer. Math. Monthly, 56 (1949), 243–247 MR0028907 0037.17601 CrossrefGoogle Scholar[6] Nikola Obrechkoff, Sur les moyennes arithmétiques de la série de Taylor, C. R. Acad. Sci. Paris, 210 (1940), 526–528 MR0002632 0023.02301 Google Scholar[7] H. S. Wall, Analytic Theory of Continued Fractions, D. Van Nostrand Company, Inc., New York, N. Y., 1948xiii+433 MR0025596 0035.03601 Google Scholar[8] E. G. Kogbetliantz, Computation of $e\sp N$ for $-\infty<N<+\infty$ using an electronic computer, IBM J. Res. Develop., 1 (1957), 110–115 MR0090146 CrossrefISIGoogle Scholar[8B] E. G. Kogbetliantz, Computation of ${\rm Sin}\ N$, ${\rm Cos}\ N$ and $\root m\of N$ using an electronic computer, IBM J. Res. Develop., 3 (1959), 147–152 MR0102170 CrossrefISIGoogle Scholar[9] Cornelius Lanczos, Applied analysis, Prentice Hall Inc., Englewood Cliffs, N. J., 1956xx+539 MR0084175 0111.12403 Google Scholar[10] L. R. Langdon, Approximating Functions for Digital Computers, Industrial Mathematics Society Journal, 6 (1955), 79–99 Google Scholar[11] Cecil Hastings, Jr., Approximations for digital computers, Princeton University Press, Princeton, N. J., 1955viii+201 MR0068915 0066.10704 CrossrefGoogle Scholar[12] H. L. Loeb, An Algorithm for Rational Function Approximations at Discrete Points, Report, AG 330, Convair Astronautics, 1958, Jan. Google Scholar[13] Helmut Werner, Tschebyscheff-Approximation im Bereich der rationalen Funktionen bei Vorliegen einer guten Ausgangsnäherung, Arch. Rational Mech. Anal., 10 (1962), 205–219 10.1007/BF00281188 MR0144448 0171.37404 CrossrefISIGoogle Scholar[14] Helmut Werner, Die konstruktive Ermittlung der Tschebyscheff-Approximierenden im Bereich der rationalen Funktionen, Arch. Rational Mech. Anal., 11 (1962), 368–384 10.1007/BF00253944 MR0145250 0171.37501 CrossrefISIGoogle Scholar[15] H. L. Loeb, A Note on Rational Function Approximation, Convair Astronautics Applied Mathematics, Series No. 27, 1959, Sept. Google Scholar[16] Eduard L. Stiefel, Numerical methods of Tchebycheff approximation, On numerical approximation. Proceedings of a Symposium, Madison, April 21-23, 1958, Edited by R. E. Langer. Publication no. 1 of the Mathematics Research Center, U.S. Army, the University of Wisconsin, The University of Wisconsin Press, Madison, 1959, 217–232 MR0107961 0083.35502 Google Scholar[17] Henry L. Loeb, Algorithms for Chebyshev approximations using the ratio of linear forms, J. Soc. Indust. Appl. Math., 8 (1960), 458–465 10.1137/0108031 MR0119383 0103.10602 LinkISIGoogle Scholar[18] E. W. Cheney and , H. L. Loeb, Two new algorithms for rational approximation, Numer. Math., 3 (1961), 72–75 10.1007/BF01386002 MR0121965 0114.32804 CrossrefGoogle Scholar[18B] E. W. Cheney and , H. L. Loeb, On rational Chebyshev approximation, Numer. Math., 4 (1962), 124–127 10.1007/BF01386303 MR0152108 0105.10703 CrossrefGoogle Scholar[19] A. A. Goldstein, Preliminary Report on a Quasi-Finite Algorithm for Tchebycheff Approximations with the Ratio of Affine Forms, Raytheon Company, Sudbury, Mass, 1027.01005 Google Scholar[20] H. J. Maehly, First Interim Progress Report on Rational Approximations, Princeton University, 1958, June Google Scholar[21] Hans J. Maehly, Methods for fitting rational approximations. I. Telescoping procedures for continued fractions, J. Assoc. Comput. Mach., 7 (1960), 150–162 MR0116455 0113.32502 CrossrefISIGoogle Scholar[22] Z. Kopal, The Approximation of Fractional Powers by Rational Fractions, Technical Summary Report, 119, U. S. Army Mathematics Research Center, 1959, Dec. Google Scholar[23] Zdeněk Kopal, Operational methods in numerical analysis based on rational approximations, On numerical approximation. Proceedings of a Symposium, Madison, April 21-23, 1958, Edited by R. E. Langer. Publication no. 1 of the Mathematics Research Center, U.S. Army, the University of Wisconsin, The University of Wisconsin Press, Madison, 1959, 25–43 MR0102165 0084.11402 Google Scholar[24] Robert W. Floyd, A note on rational approximation, Math. Comput., 14 (1960), 72–73 MR0109427 0097.33302 CrossrefGoogle Scholar[25] P. Wynn, The rational approximation of functions which are formally defined by a power series expansion, Math. Comput., 14 (1960), 147–186 MR0116457 0173.18803 CrossrefGoogle Scholar[26] Heinz Rutishauser, Anwendungen des Quotienten-Differenzen-Algorithmus, Z. Angew. Math. Phys., 5 (1954), 496–508 10.1007/BF01601216 MR0068314 0056.35001 CrossrefGoogle Scholar[27] Peter Henrici, The quotient-difference algorithm, Nat. Bur. Standards Appl. Math. Ser. no., 49 (1958), 23–46, Further Contributions to Solution of Simultaneous Linear Equations and the Determination of Eigenvalues, Washington, D.C. MR0094901 0136.12803 Google Scholar[28] L. M. Milne-Thomson, The Calculus of Finite Differences, Macmillan, London, 1933 0008.01801 Google Scholar[29] E. Ya. Remes, Methods of Best Approximate Representation of Functions in the Sense of Tchebycheff, Kiev, 1935, (Ukrainian) Google Scholar[29B] E. Remes, Sur le Calcul Effectif des Polynomes d'Approximation de Tchebichef, C. R. Acad. Sci. Paris, 199 (1934), 337–340 0010.01702 Google Scholar[30] E. P. Novodvorskii˘ and , I. Š. Pinsker, The process of equating maxima, Uspehi Matem. Nauk (N.S.), 6 (1951), 174–181 MR0046400 02239767 Google Scholar[31] H. F. Mattson, Jr., An Algorithm for Finding Rational Approximations, Air Force Cambridge Research Laboratories, Bedford, Mass., 1960 Google Scholar[32] E. W. Cheney, A Note on Rational Approximations, Report, D1-82-0184, Boeing Scientific Research Laboratories, 1962, June Google Scholar[33] W. Fraser and , J. F. Hart, On the Computation of Rational Approximations to Continuous Functions, Comm. Assoc. for Comput. Mach, 5 (1962), 401–403, 414 0107.33801 ISIGoogle Scholar[34] Daniel Shanks, Non-linear transformations of divergent and slowly convergent sequences, J. Math. Phys., 34 (1955), 1–42 MR0068901 0067.28602 CrossrefISIGoogle Scholar Previous article Next article FiguresRelatedReferencesCited ByDetails Adaptive sampling applied to multivariate, multiple output rational interpolation models with application to microwave circuitsInternational Journal of RF and Microwave Computer-Aided Engineering, Vol. 12, No. 4 | 19 June 2002 Cross Ref Creating accurate multivariate rational interpolation models of microwave circuits by using efficient adaptive sampling to minimize the number of computational electromagnetic analysesIEEE Transactions on Microwave Theory and Techniques, Vol. 49, No. 8 | 1 Aug 2001 Cross Ref Approximation in normed linear spacesNumerical Analysis: Historical Developments in the 20th Century | 1 Jan 2001 Cross Ref Approximation in normed linear spacesJournal of Computational and Applied Mathematics, Vol. 121, No. 1-2 | 1 Sep 2000 Cross Ref Rational function fits to the nonresonant elastic differential cross sections (DCS) for e + He collisions, 0°–180°, 0.1 to 1000 eVAtomic Data and Nuclear Data Tables, Vol. 52, No. 1 | 1 Sep 1992 Cross Ref Functional ApproximationHandbook of Applied Mathematics | 1 Jan 1990 Cross Ref A Modified Remes AlgorithmSIAM Journal on Scientific and Statistical Computing, Vol. 9, No. 6 | 13 July 2006AbstractPDF (1547 KB)Stability of the linear inequality method for rational Chebyshev approximationJournal of Computational and Applied Mathematics, Vol. 11, No. 2 | 1 Oct 1984 Cross Ref An Application of a Restricted Range Version of the Differential Correction Algorithm to the Design of Digital SystemsNumerische Methoden der Approximationstheorie/Numerical Methods of Approximation Theory | 1 Jan 1976 Cross Ref Synthesis of spectrum shaping digital filters of recursive designIEEE Transactions on Circuits and Systems, Vol. 22, No. 3 | 1 Mar 1975 Cross Ref Computational Methods in Special Functions-A SurveyTheory and Application of Special Functions | 1 Jan 1975 Cross Ref Best rational product approximations of functions. IIJournal of Approximation Theory, Vol. 12, No. 1 | 1 Sep 1974 Cross Ref A comparison of algorithms for rational 𝑙_{∞} approximationMathematics of Computation, Vol. 27, No. 121 | 1 January 1973 Cross Ref The Differential Correction Algorithm for Rational $\ell _\infty $-ApproximationSIAM Journal on Numerical Analysis, Vol. 9, No. 3 | 14 July 2006AbstractPDF (950 KB)Using efficient multivariate adaptive sampling by minimizing the number of computational electromagnetic analysis needed to establish accurate interpolation models2001 IEEE MTT-S International Microwave Sympsoium Digest (Cat. No.01CH37157) Cross Ref BibliographyThe Special Functions and their Approximations | 1 Jan 1969 Cross Ref BibliographyThe Special Functions and Their Approximations | 1 Jan 1969 Cross Ref An Extension of Obreshkov’s FormulaSIAM Journal on Numerical Analysis, Vol. 5, No. 3 | 14 July 2006AbstractPDF (178 KB)Padésche Näherungsbrüche und Iterationsverfahren höherer OrdnungComputing, Vol. 3, No. 3 | 1 Sep 1968 Cross Ref Applications of Linear Programming to Numerical AnalysisSIAM Review, Vol. 10, No. 2 | 18 July 2006AbstractPDF (3637 KB)Rational Function Approximation As a Well-Conditioned Matrix Eigenvalue ProblemSIAM Journal on Numerical Analysis, Vol. 4, No. 4 | 14 July 2006AbstractPDF (519 KB)Truncation errors in Padé approximations to certain functions: An alternative approachMathematics of Computation, Vol. 21, No. 99 | 1 January 1967 Cross Ref Time-Domain Approximation by Iterative MethodsIEEE Transactions on Circuit Theory, Vol. 13, No. 4 | 1 Dec 1966 Cross Ref Functions whose best rational Chebyshev approximations are polynomialsNumerische Mathematik, Vol. 6, No. 1 | 1 Dec 1964 Cross Ref Accelerated Convergence, Divergence, Iteration, Extrapolation, and Curve FittingJournal of Applied Physics, Vol. 35, No. 10 | 1 Jan 1964 Cross Ref Volume 5, Issue 3| 1963SIAM Review203-320 History Submitted:03 December 1962Published online:18 July 2006 InformationCopyright © 1963 Society for Industrial and Applied MathematicsPDF Download Article & Publication DataArticle DOI:10.1137/1005065Article page range:pp. 219-231ISSN (print):0036-1445ISSN (online):1095-7200Publisher:Society for Industrial and Applied Mathematics

Referência(s)
Altmetric
PlumX