One Century of Physical Organic Chemistry: The Menshutkin Reaction

1993; Linguagem: Inglês

10.1002/9780470171981.ch1

ISSN

1934-4821

Autores

José‐Luis M. Abboud, Rafael Notario, Juan Bertrán, Miquel Solà,

Tópico(s)

Chemical Reactions and Mechanisms

Resumo

One Century of Physical Organic Chemistry: The Menshutkin Reaction Josél-uis M. Abboud, Josél-uis M. Abboud Instituto de Quimica Fisica “Rocasolano,” CSIC Madrid, SpainSearch for more papers by this authorRafael Notario, Rafael Notario Instituto de Quimica Fisica “Rocasolano,” CSIC Madrid, SpainSearch for more papers by this authorJuan Bertrán, Juan Bertrán Departament de Quimica, Universitat Autònoma de Barcelona, Bellaterra (Catalonia), SpainSearch for more papers by this authorMiquel Solà, Miquel Solà Departament de Quimica, Universitat Autònoma de Barcelona, Bellaterra (Catalonia), SpainSearch for more papers by this author Josél-uis M. Abboud, Josél-uis M. Abboud Instituto de Quimica Fisica “Rocasolano,” CSIC Madrid, SpainSearch for more papers by this authorRafael Notario, Rafael Notario Instituto de Quimica Fisica “Rocasolano,” CSIC Madrid, SpainSearch for more papers by this authorJuan Bertrán, Juan Bertrán Departament de Quimica, Universitat Autònoma de Barcelona, Bellaterra (Catalonia), SpainSearch for more papers by this authorMiquel Solà, Miquel Solà Departament de Quimica, Universitat Autònoma de Barcelona, Bellaterra (Catalonia), SpainSearch for more papers by this author Book Editor(s):Robert W. Taft, Robert W. Taft Department of Chemistry, University of California, Irvine, CaliforniaSearch for more papers by this author First published: 01 January 1993 https://doi.org/10.1002/9780470171981.ch1Citations: 54Book Series:Progress in Physical Organic Chemistry AboutPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShareShare a linkShare onEmailFacebookTwitterLinkedInRedditWechat Summary This chapter contains sections titled: Menshutkin and the Menshutkin Reaction Thermodynamic Features of the Menshutkin Reaction Kinetics of the Menshutkin Reaction Quantum-Mechanical Approach Overview References and Notes The word “MeHIIIyTKNNH” is transliterated as either “Menschutkin” or “Menshutkin”. Inasmuch as the latter form is used in recent IUPAC reports (2), it will be used throughout this chapter. Google Scholar R. A. Y. Jones and J. F. Bunnett, Pure Appl. Chem., 61, 725–768 (1989). 10.1351/pac198961040725 CASWeb of Science®Google Scholar (a) For biographical details, see, e.g.: D. N. Monastyrskii, Zh. Obshch. Khim., 27, 3181–3182 (1957). Google Scholar(b) D. N. Monastyrskii, Zadovskaya Lab., 23, 508–510 (1957). Google Scholar (a) N. A. Menshutkin, Z. Phys. Chem., 6, 41–57 (1890). 10.1515/zpch-1890-0607 Google Scholar(b) a study on the quaternization of triethylamine with a variety of alkyl iodides and bromides in benzene and acetone was published that same year. Google Scholar see N. Menshutkin, Z. Phys. Chem., 5, 589–600 (1890). 10.1515/zpch-1890-0546 Google Scholar(c) a “centennial visit” has recently been paid to this system. Google Scholar see V. Bekárek and T. Nevěčná: Chem. Listy, 84, 1117–1120 (1990). Web of Science®Google Scholar See, e.g., A. W. Hofmann, Ber., 6, 263–264 (1893) and references cited therein. 10.1002/cber.18730060196 Google Scholar For historical aspects on reactivity, see, e.g., C. Reichardt, Solvents and Solvent Effects in Organic Chemistry, 2nd ed., VCH, Weinheim, 1988, Chapter 1. Google Scholar See, e.g., A. Bruylants, Bull. Class. Sci. Acad. Roy. Sci. Belg., 72, 866–882 (1976). Google Scholar R. D. Guthrie, Pure Appl. Chem., 62, 23–56 (1989). Web of Science®Google Scholar (a) E. A. Moelwyn-Hughes and C. N. Hinshelwood. J. Chem. Soc., 230–240, (1932). Google Scholar(b) H. W. Thompson and E. E. Blandon, J. Chem. Soc., 1237–1240 (1933). Google Scholar (a) F. A. Petrachkov and V. A. Hol'tsshmidt, Zh. Fiz. Khim., 28, 1213–1218 (1954). Web of Science®Google Scholar(b) F. A. Petrachkov, Zh. Fiz. Khim., 28, 1408–1416. (1954). Web of Science®Google Scholar(c) Ya. M. Slobodin, Zh. Org. Khim., 21, 1135–1136 (1985). This work also reports results on the systems Me3N/MeBr in the gas phase. CASWeb of Science®Google Scholar A. T. Gladyshev and Ya. K. Syrkin, Acta Physicochim. U.S.S.R., 8, 323–324 (1938). Google Scholar J. Phys. Chem., (U.S.S.R.), 11, 425–433 (1938). Google Scholar (a) H. von Halban, Z. Phys. Chem., 67, 129–182 (1909) and references cited therein. CASGoogle Scholar(b) W. J. Pope and A. W. Harvey, J. Chem. Soc., 79, 828–841 (1901). 10.1039/ct9017900828 CASGoogle Scholar (a) Representative studies of ion pairing in MRs and related processes are L. Y. Chow and R. M. Fuoss, J. Am. Chem. Soc., 80, 1095–1100 (1958). 10.1021/ja01538a020 CASWeb of Science®Google Scholar(b) Y. Kondo, M. Shinzawa, and N. Tokura, Bull. Chem. Soc. Jpn., 50, 713–717 (1977). 10.1246/bcsj.50.713 CASWeb of Science®Google Scholar(c) J. M. Stewart and K. E. Weale, J. Chem. Soc., 2849–2853 (1965). Google Scholar E. M. Arnett and R. Reich, J. Am. Chem. Soc., 102, 5892–5902 (1980). 10.1021/ja00538a031 CASWeb of Science®Google Scholar (a) H. Essex and O. Gelormini, J. Am. Chem. Soc., 48, 882–894 (1926). 10.1021/ja01415a006 CASGoogle Scholar(b) G. E. Edwards, Trans. Faraday Soc., 33, 1294–1306 (1937). 10.1039/tf9373301294 CASGoogle Scholar(c) W. C. Davies and R. G. Cox, J. Chem. Soc., 614–621 (1937). Google Scholar This is why works given in Ref. 15 are mostly of historical interest. Google Scholar H. C. Brown. D. Gintis, and L. Domash, J. Am. Chem. Soc., 78, 5387–5394 (1956) and eferences cited therein. 10.1021/ja01601a061 CASWeb of Science®Google Scholar R. E. J. Hutchinson and D. S. Tarbell, J. Org. Chem., 34, 66–70 (1969). 10.1021/jo00838a016 CASWeb of Science®Google Scholar E. M. Arnett and C. Petro, J. Am. Chem. Soc., 78, 5387–5394 (1976). Google Scholar Y. Kondo, A. Zanka, and S. Kusabayashi, J. Chem. Soc., Perkin Trans., 2, 827–832 (1985). 10.1039/p29850000827 Web of Science®Google Scholar J.-F. Gal and P.-C. Maria, Prog. Phys. Org. Chem., 17, 159–238 (1990). 10.1002/9780470171967.ch6 CASGoogle Scholar M. Berthelot, J.-F. Gal, C. Laurence, and P.-C. Maria, J. Chim. Phys., 81, 327–331 (1984). CASWeb of Science®Google Scholar J.-L. M. Abboud, J. Catalán, J. Elguero, and R. W. Taft, J. Org. Chem., 53, 1137–1140 (1988). 10.1021/jo00241a003 CASWeb of Science®Google Scholar C. L. Liotta, E. M. Perdue, and H. P. Hopkins, Jr., J. Am. Chem. Soc., 96, 7308–7311 (1974). 10.1021/ja00830a022 CASWeb of Science®Google Scholar J. Hine, Structural Effects on Equilibria in Organic Chemistry, Wiley-Interscience, New York, 1972. Google Scholar The methyl cation affinity of a base B is the standard enthalpy change for the following reaction: (B—CH3)+ → B + CH+3 Google Scholar As shown by a regression analysis of ΔH,°Me+ in various solvents versus ΔH,°Me+(NB). Google Scholar Experimental values of ΔΔH,°Me+(NB), which are more numerous, have been chosen as the reference data set. Google Scholar (a) U. Berg, R. Gallo, and J. Metzger, J. Org. Chem., 41, 2621–2624 (1976) and references cited therein. 10.1021/jo00877a023 CASWeb of Science®Google Scholar(b) U. Berg and R. Gallo, Acta Chem. Scand., 37, 661–673 (1983). 10.3891/acta.chem.scand.37b-0661 Web of Science®Google Scholar(c) L. W. Deady, W. L. Finlayson, and O. L. Korytsky, Aust. J. Chem., 32, 1735–1742 (1979). 10.1071/CH9791735 CASWeb of Science®Google Scholar (a) J. B. Rossell, J. Chem. Soc., 5183–5197 (1963). Google Scholar(b) T. Matsui and N. Tokura, Bull. Chem. Soc. Jpn., 43, 1751–1762 (1970). 10.1246/bcsj.43.1751 CASWeb of Science®Google Scholar See, e.g., A. R. Katritzky, A. Banergii, B. S. El-Osta, I. R. Parker, and C. A. Ramsden, J. Chem. Soc., Perkin Trans., 2, 90–94 (1979). Google Scholar (a) M. H. Abraham, J. Chem. Soc., Chem. Commun., 1307–1308 (1969). Google Scholar(b) M. H. Abraham, J. Chem. Soc., B, 299–308 (1971). Google Scholar(c) M. H. Abraham, Prog. Phys. Org. Chem., 11, 1–83 (1974). 10.1002/9780470171905.ch1 CASGoogle Scholar These equations show that a broader definition of the MR extending to neutral nucleofuges is formally valid. A great deal of kinetic data involving a variety of neutral heterocyclic nucleofuges are presently available. See, e.g., (a) A. R. Katritzky, and B. E. Brycki, J. Phys. Org. Chem., 1, 1–20 (1988). 10.1002/poc.610010103 CASWeb of Science®Google Scholar(b) A. R. Katritzky and B. E. Brycki, Chem. Soc. Rev., 19, 83–105 (1990). 10.1039/cs9901900083 CASWeb of Science®Google Scholar The basicity of a base B with respect to an alkyl cation R+ is the standard free-energy change for the following reaction: (BR)+ → B + R+ Google Scholar Sources of thermodynamic data are as follows: (a) ΔH,°t(CH3I) from J. B. Pedley, R. D. Naylor, and S. P. Kirby, Thermodynamic Data of Organic Compounds, 2nd ed., Chapman and Hall, London, 1986. 10.1007/978-94-009-4099-4 Google Scholar(b) ΔH,°t(Me+) is from Ref. 37a. Google Scholar(c) the methyl cation affinity of pyridine has been estimated as described in Ref. 37a. Google Scholar(d) ΔH°t(I−) is from Prof. J. E. Bartmess. compilation of gas-phase acidities (1987). Google Scholar (a) C. A. Bunton, in Nucleophilicity, J. M. Harris and S. P. McManus, eds., Advances in Chemistry Series, Vol. 215, American Chemical Society, Washington D. C., 1987, Chapter 29, Google Scholar(b) Edwards [ G. E. Edwards, Trans. Faraday Soc., 33, 1294–1306 (1937)] has described an extremely complex kinetic behavior in the case of the reaction between N,N,-dimethylaniline and MeI in benzene solution. To our knowledge, his results have never been fully understood. They show self-catalytic effects that might originate in surface effects, micellar catalysis, and/or selective solvation of the transition state. 10.1039/tf9373301294 CASGoogle Scholar (a) T. B. McMahon, T. Heinis, G. Nicol, J. K. Hovey, and P. Kebarle, J. Am. Chem. Soc., 110, 7591–7598 (1988). 10.1021/ja00231a002 CASWeb of Science®Google Scholar(b) C. A. Deakine and M. Meot-Ner (Mautner), J. Phys. Chem., 94, 232–239 (1990). 10.1021/j100364a038 Web of Science®Google Scholar See, e.g., L. G. Hepler, J. Am. Chem. Soc., 85, 3089–3092 (1963). 10.1021/ja00903a008 CASWeb of Science®Google Scholar (a) MRs define a subset of these reactions. Google Scholar(b) for standard free-energy changes for methyl cation exchanges between anions, see, e.g., E. S. Lewis, and D. D. Hu, J. Am. Chem. Soc., 106, 3292–3296 (1984) and references cited therein. 10.1021/ja00323a038 CASWeb of Science®Google Scholar (a) M. Dantus, M. J. Rosker, and A. H. Zewail, J. Chem. Phys., 87, 2395–2397 (1987). 10.1063/1.453122 CASWeb of Science®Google Scholar(b) R. B. Bernstein and A. H. Zewail, J. Chem. Phys., 90, 829–842 (1988). 10.1063/1.456108 Web of Science®Google Scholar W. F. K. Wynne-Jones and H. Eyring. J. Chem. Phys., 3, 492–502 (1953). 10.1063/1.1749713 Google Scholar See, e.g., I. N. Levine, Physical Chemistry, McGraw-Hill, New York, 1978, pp. 773–775. Google Scholar (a) J. N. Brønsted, Chem. Rev., 5, 231–338 (1928). 10.1021/cr60019a001 CASWeb of Science®Google Scholar(b) J. N. Brønsted and K. J. Pedersen, Z. Phys. Chem., 108, 185–235 (1924). 10.1515/zpch-1924-10814 CASWeb of Science®Google Scholar(c) R. P. Bell, in Correlation Analysis in Chemistry. Recent Advances, N. B. Chapman and J. Shorter, eds., Plenum Press, New York, 1978, Chapter 2. Google Scholar L. P. Hammett, Chem. Rev., 17, 125–136 (1935). 10.1021/cr60056a010 CASWeb of Science®Google Scholar (a) M. H. Abraham, in Advances in Solution Chemistry;, I. Bertini, L. Lunazzi, and A. Dei, eds., Plenum Press, New York, 1981. Google Scholar(b) M. H. Abraham and P. Grellier, J. Chem. Soc., Perkin Trans., 2, 1735–1741 (1976). 10.1039/p29760001735 Web of Science®Google Scholar G. S. Hammond, J. Am. Chem. Soc., 77, 334–338 (1955). 10.1021/ja01607a027 CASWeb of Science®Google Scholar E. R. Thorton, J. Am. Chem. Soc., 89, 2915–2927 (1967). 10.1021/ja00988a020 Web of Science®Google Scholar J. C. Harris and J. L. Kurz, J. Am. Chem. Soc., 92, 349–355 (1970). 10.1021/ja00705a644 CASWeb of Science®Google Scholar (a) R. A. More O'Ferrall, J. Chem. Soc. B, 274–277 (1970). Google Scholar(b) W. P. Jencks, Chem. Rev., 85, 511–527 (1985). 10.1021/cr00070a001 CASWeb of Science®Google Scholar (a) R. A. Marcus, Ann. Rev. Phys. Chem., 15, 155–196 (1964). 10.1146/annurev.pc.15.100164.001103 CASWeb of Science®Google Scholar(b) R. A. Marcus, J. Phys. Chem., 72, 891–899 (1968). 10.1021/j100849a019 CASWeb of Science®Google Scholar(c) A. D. Cohen and R. A. Marcus, J. Phys. Chem., 72, 4249–4256 (1968). 10.1021/j100858a052 CASWeb of Science®Google Scholar (a) W. J. Albery, Pure Appl. Chem., 51, 949–965 (1979). 10.1351/pac197951050949 CASWeb of Science®Google Scholar(b) W. J. Albery and M. M. Kreevoy, Adv. Phys. Org. Chem., 16, 87–157 (1978). 10.1016/S0065-3160(08)60087-8 CASGoogle Scholar J. R. Murdoch, J. Am. Chem. Soc., 105, 2660–2667 (1983). 10.1021/ja00347a024 CASWeb of Science®Google Scholar (a) I. Lee, J. Chem. Soc., Perkin Trans., 2, 943–950 (1989). 10.1039/p29890000943 Web of Science®Google Scholar(b) I. Lee, J. K. Cho, H. S. Kim, and K. S. Kim, J. Phys. Chem., 94, 5190–5193 (1990). 10.1021/j100375a077 CASWeb of Science®Google Scholar(c) I. Lee, Chem. Soc. Rev., 19, 133–145 (1990). 10.1039/cs9901900133 CASPubMedWeb of Science®Google Scholar (a) A. J. C. Varandas and S. J. Formosinho, J. Chem. Soc., Chem. Commun., 163–165 (1986). Google Scholar(b) A. J. C. Varandas and S. J. Formosinho, J. Chem. Soc., Faraday Trans., 2, 82, 953–962 (1986). 10.1039/f29868200953 Web of Science®Google Scholar(c) S. J. Formosinho, J. Chem. Soc., Perkin Trans., 2, 839–846 (1988). 10.1039/p29880000839 Web of Science®Google Scholar J.-E. Dubois, M.-F. Rouasse, and A. Argile, J. Am. Chem. Soc., 106, 4840–4845 (1984). 10.1021/ja00329a033 CASWeb of Science®Google Scholar Y. Kondo, T. Matsui, and N. Tokura, Bull. Chem. Soc. Jpn., 42, 1037–1047 (1969). 10.1246/bcsj.42.1037 CASWeb of Science®Google Scholar R. M. Claramunt, R. Gallo, J. Elguero, D. Mathieu, and R. Phan Tan Luu, J. Chim. Phys., 78, 805–814 (1981). 10.1051/jcp/1981780805 CASWeb of Science®Google Scholar F. Quemeneur and B. Bariou, J. Chem. Res., (S), 187 (1979). Google Scholar J. Chem. Res., (M), 2344–2356 (1979). This is an extensive work that has received surprisingly little attention. Google Scholar This was first shown by Menshutkin himself. see N. Menshutkin, Z. Phys. Chem., 17, 193–233 (1895). Google Scholar These findings were confirmed and extended by Moore and coworkers. see T. S. Moore, D. B. Somervell, and J. N. Derry, J. Chem. Soc., 2459–2467 (1912). Google Scholar W. G. Brown and S. Fried, J. Am. Chem. Soc., 65, 1841–1845 (1943). 10.1021/ja01250a015 CASGoogle Scholar (a) H. C. Brown and N. R. Eldred, J. Am. Chem. Soc., 71, 445–450 (1949). 10.1021/ja01170a020 CASWeb of Science®Google Scholar(b) H. C. Brown and A. Cahn, J. Am. Chem. Soc., 77, 1715–1723 (1955). 10.1021/ja01612a001 CASWeb of Science®Google Scholar(c) H. C. Brown, D. Gintis, and H. Podall J. Am. Chem. Soc., 78, 5375–5377 (1956). 10.1021/ja01601a058 CASWeb of Science®Google Scholar(d) H. C. Brown. J. Chem. Soc., 1248–1268 (1956). Google Scholar(e) H. C. Brown, J. Chem. Educ., 36, 424–431 (1959). 10.1021/ed036p424 CASGoogle Scholar (a) J. A. Zoltiewicz and L. W. Deady, Adv. Heterocycl. Chem., 22, 71–122 (1978). 10.1016/S0065-2725(08)60103-8 Google Scholar(b) K.-J. Schaper, Arch. Pharm. (Weinheim), 311, 641–649 (1978). 10.1002/ardp.19783110802 CASPubMedWeb of Science®Google Scholar(c) K.-J. Schaper, Arch. Pharm. (Weinheim), 311, 650–663 (1978). 10.1002/ardp.19783110803 CASPubMedWeb of Science®Google Scholar (a) U. Berg, R. Gallo, G. Klatte, and J. Metzger, J. Chem. Soc., Perkin Trans., 2, 1850–1858 (1980). Google Scholar(b) C. Roussel, A. T. Balaban, U. Berg, M. Chanon, R. Gallo, G. Klatte, J. A. Memiaghe, J. Metzger, D. Oniciu, and J. Pierrot-Sanders, Tetrahedron, 39, 4209–4219 (1983). 10.1016/S0040-4020(01)88642-7 CASWeb of Science®Google Scholar(c) R. Gallo. Prog. Phys. Org. Chem., 14, 115–63 (1983). 10.1002/9780470171936.ch3 CASWeb of Science®Google Scholar(d) U. Berg, R. Gallo, J. Metzger, and M. Chanon, J. Am. Chem. Soc., 98, 1260–1262 (1976). 10.1021/ja00421a036 CASWeb of Science®Google Scholar (a) J. K. Seydel, K.-J. Schaper, E. Wempe, and H. P. Cordes, J. Med. Chem., 19, 483–492 (1976). 10.1021/jm00226a007 CASPubMedWeb of Science®Google Scholar(b) J. I. Seeman, R. Galzerano, K. Curtis, J. C. Schug, and J. W. Viers, J. Am. Chem. Soc., 103, 5982–5984 (1981). 10.1021/ja00409a089 CASWeb of Science®Google Scholar (a) S. M. M. El-Shafie and F. A. Fouli, Egypt. J. Chem., 29, 647–657 (1986). Google Scholar(b) S. M. M. El-Shafie, Egypt. J. Chem., 30, 179–188 (1987). CASGoogle Scholar (a) D. F. De Tar, J. Org. Chem., 45, 5174–5176 (1980). 10.1021/jo01313a030 CASWeb of Science®Google Scholar(b) D. F. De Tar, D. F. McMullen, and N. P. Luthra, J. Am. Chem. Soc., 100, 2484–2493 (1978). 10.1021/ja00476a036 CASWeb of Science®Google Scholar J. Palecek and J. Hlavaty, Collect. Czech. Chem. Commun., 38, 1985–2002 (1973). 10.1135/cccc19731985 CASWeb of Science®Google Scholar (a) C. A. Grob and M. G. Schlageter, Helv. Chim. Acta, 57, 509–511 (1974). 10.1002/hlca.19740570227 CASWeb of Science®Google Scholar(b) Helv. Chim. Acta, 60, 1884–1889 (1977). 10.1002/hlca.19770600606 CASWeb of Science®Google Scholar (a) M. H. Abraham, P. L. Grellier, J.-L. M. Abboud, R. M. Doherty, and R. W. Taft, Can. J. Chem., 66, 2673–2686 (1988). 10.1139/v88-420 CASWeb of Science®Google Scholar(b) M. H. Abraham, P. L. Grellier, and R. A. McGill, J. Chem. Soc., Perkin Trans., 2, 339–346 (1988). 10.1039/p29880000339 Web of Science®Google Scholar R. W. Taft and R. D. Topsom, Prog. Phys. Org. Chem., 16, 1–83 (1987). 10.1002/9780470171950.ch1 Google Scholar For other treatments of substituent effects, see, e.g., M. Fujio, M. Goto, T. Susuki, M. Mishima, and Y. Tsuno, J. Phys. Org. Chem., 3, 449–455 (1990). 10.1002/poc.610030706 CASWeb of Science®Google Scholar C. A. Grob, Angew. Chem., Int. Ed. Engl., 15, 569–575 (1976). 10.1002/anie.197605691 Web of Science®Google Scholar C. D. Johnson, I. Roberts, and P. G. Taylor, J. Chem. Soc., Perkin Trans., 2, 409–413 (1981). 10.1039/p29810000409 Web of Science®Google Scholar A. Fischer, W. J. Galloway, and J. Vaughan, J. Chem. Soc., 3596–3599 (1964). Google Scholar Y. Kondo, M. Ogasa, and S. Kusabayashi, J. Chem. Soc., Perkin Trans., 2, 2093–2097 (1984). 10.1039/P29840002093 Web of Science®Google Scholar That is, the values of pF and pR are quite insensitive to a reduction of the database. Google Scholar K. Clarke and K. Rothwell, J. Chem. Soc., 1885–1895 (1960). Google Scholar G. Coppens, F. Declerck, C. Gillet, and J. Nasielski, Bull. Soc. Chim. Belg., 72, 25–37 (1963). 10.1002/bscb.19630720103 CASWeb of Science®Google Scholar P. L. Kronick and R. M. Fuoss, J. Am. Chem. Soc., 77, 6114 (1955). 10.1021/ja01628a006 CASWeb of Science®Google Scholar M. Watanabe and R. M. Fuoss, J. Am. Chem. Soc., 78, 527–529 (1956). 10.1021/ja01584a005 CASWeb of Science®Google Scholar (a) D. N. Kevill and B. W. Shen, J. Am. Chem. Soc., 103, 4515–4521 (1981). 10.1021/ja00405a037 CASWeb of Science®Google Scholar(b) S. D. Yoh, Y. Tsuno, M. Fujio, M. Sawada, and Y. Yukawa, J. Chem. Soc., Perkin Trans., 2, 7–13 (1989). values taken from Fig. 2 of this paper. 10.1039/p29890000007 Web of Science®Google Scholar(c) H. P. Crocker and B. Jones, J. Chem. Soc., 1808–1816 (1959). Google Scholar(d) V. Baliah and V. M. Kanagasabapathy, Tetrahedron, 34, 3611–3615 (1978). 10.1016/0040-4020(78)88438-5 CASWeb of Science®Google Scholar Values taken from Tables of Rates and Equilibrium Constants of Heterolytic Organic Reactions, V. A. Pal'm, ed., Binitii Moscow, 1976, Vol. I (II). Google Scholar (a) N. Menshutkin, Z. Phys. Chem., 17, 193–233 (1895). Google Scholar(b) N. Menshutkin, Ber, 30, 2775–2784 (1897). 10.1002/cber.18970300366 Google Scholar(c) K. Okamoto, S. Fukui, and H. Shingu, Bull. Chem. Soc. Jpn., 40, 1920–1925 (1967). 10.1246/bcsj.40.1920 CASWeb of Science®Google Scholar(d) K. Okamoto, S. Fukui, I. Nitta, and H. Shingu, Bull. Chem. Soc. Jpn., 40, 2350–2353 (1967). 10.1246/bcsj.40.2350 CASWeb of Science®Google Scholar(e) A. A. Matveev, Zh. P. Piskunova, V. A. Pal'm, and A. F. Popov, Org. React. (Tartu), 22, 110–118 (1985). Web of Science®Google Scholar(f) A. F. Popov, A. A. Matveev, Zh. P. Piskunova, and V. A. Pal'm, Org. React. (Tartu), 22, 153–161 (1985). CASWeb of Science®Google Scholar(g) L. M. Litvinenko, A. F. Popov, Zh. P. Gelbina, and E. V. Kirillov, Reakts. Sposobnost Org. Soedin, 10, 175–186 (1973). Google Scholar R. W. Taft, Jr., in Steric Effects in Organic Chemistry, M. S. Newman, ed., Wiley, New York, 1956, p. 556. Web of Science®Google Scholar (a) W. A. Henderson, Jr. and C. J. Schultz, J. Org. Chem., 27, 4643–4646 (1962). 10.1021/jo01059a507 CASWeb of Science®Google Scholar(b) W. A. Henderson, Jr. and S. A. Buckler, J. Am. Chem. Soc., 82, 5794–5800 (1960). 10.1021/ja01507a009 CASWeb of Science®Google Scholar(c) C. Takayama, T. Fujita, and M. Nakajima, J. Org. Chem., 44, 2871–2879 (1979). 10.1021/jo01330a011 CASWeb of Science®Google Scholar M. Pánková, J. Krupička, and J. Závada, Collect. Czech. Chem. Commun., 39, 167–170 (1974). 10.1135/cccc19740167 CASWeb of Science®Google Scholar F. G. Bordwell, T. A. Cripe, and D. L. Hughes, in Nucleophilicity, Advances in Chemistry Series 215, J. M. Harris and S. P. McManus, eds., American Chemical Society, Washington, D. C., 1987, Chapter 9. Google Scholar K. Okamoto, S. Fukui, I. Nitta, and H. Shingu, Bull. Chem. Soc. Jpn., 40, 2354–2357 (1967). 10.1246/bcsj.40.2354 CASWeb of Science®Google Scholar M. H. Abraham, J. Chem. Soc., Chem. Commun., 293 (1970). Google Scholar L. Salem, Chem. Br., 5, 449–458 (1969). CASWeb of Science®Google Scholar J.-L. M. Abboud, R. Notario, M. Berthelot, R. M. Claramunt, P. Cabildo, J. Elguero, M. J. El Ghomari, W. Bouab, R. Mokhlisse, and G. Guihéneuf, J. Am. Chem. Soc., 113, 7489–7493 (1991). 10.1021/ja00020a006 CASWeb of Science®Google Scholar C. G. Swain and N. D. Hershey, J. Am. Chem. Soc., 94, 1901–1905 (1972). 10.1021/ja00761a019 CASWeb of Science®Google Scholar For example, for NH3, s, = 3. for NH+4, s, = 12 and for H3N…RL, s, = 3. Google Scholar See, e.g., S. G. Lias, J. F. Liebman, and R. D. Levin, J. Phys. Chem. Ref. Data, 13, 695–808 (1984). 10.1063/1.555719 CASWeb of Science®Google Scholar Whenever possible, values experimentally determined in MeCN at 298 K have been used. In some cases, “secondary” values were calculated using extremely precise (r,2 ≥ .99) correlations between data obtained in MeCN and in aprotic solvents. Google Scholar Unless otherwise stated, these values were determined at University of California, Irvine and are referred to the same “basicity ladder” (values kindly communicated by Prof. R. W. Taft). These data have been reported: see Ref. 95 and S. G. Lias, J. E. Bartmess, J. L. Holmes, R. D. Levin, J. F. Liebman, and R. G. Mallard, J. Phys. Chem. Ref. Data, Suppl. No. 1 to Vol. 17 (1988). CASGoogle Scholar D. H. Aue and M. T. Bowers, in Gas-Phase Ion Chemistry, Vol. 2, Academic Press, New York, 1979. Google Scholar Y. Kondo, R. Uematsu, Y. Nakamura, and S. Kusabayashi, J. Chem. Soc., Perkin Trans., 2, 1219–1224 (1988). 10.1039/P29880001219 Web of Science®Google Scholar R. Wylde, J. G. Saeluzika, and M. Lanfumey, J. Org. Chem., 40, 1308–1312 (1975). 10.1021/jo00897a028 CASWeb of Science®Google Scholar J. A. Zoltiewicz and L. W. Deady, J. Am. Chem. Soc., 94, 2765–2769 (1972). 10.1021/ja00763a039 Web of Science®Google Scholar R. A. Benkeser, C. E. De Boer, R. E. Robinson, and D. M. Sauve, J. Am. Chem. Soc., 78, 682–686 (1956). 10.1021/ja01584a045 CASWeb of Science®Google Scholar Y. Kondo, S. Izawa, and S. Kusabayashi, J. Chem. Soc., Perkin Trans., 2, 1925–1928 (1988). 10.1039/P29880001925 Web of Science®Google Scholar (a) R. Cervellati, A. Dal Borgo, and D. G. Lister, J. Mol. Struct., 78, 161–167 (1982). 10.1016/0022-2860(82)80003-3 CASWeb of Science®Google Scholar(b) Z. Niu and J. E. Boggs, J. Mol. Struct., (Theochem.), 109, 381–389 (1984). 10.1016/0166-1280(84)80022-6 CASGoogle Scholar(c) J. D. Andose, J.-M. Lehn, K. Mislow, and J. Wagner, J. Am. Chem. Soc., 92, 4050–4056 (1970). 10.1021/ja00716a037 CASWeb of Science®Google Scholar(d) H. Ahlbrecht, E. O. Düber, J. Epsztajn, and R. M. K. Marcinkowski, Tetrahedron, 40, 1157–1165 (1984). 10.1016/S0040-4020(01)99321-4 CASWeb of Science®Google Scholar P.-C. Maria, J.-F. Gal, J. de Franceschi, and E. Fargin, J. Am. Chem. Soc., 109, 483–492 (1987). 10.1021/ja00236a029 CASWeb of Science®Google Scholar (a) For relevant discussions on this topic, see, e.g.: Ref. 43b. Google Scholar(b) Ref. 49b. Google Scholar(c) E. S. Lewis, J. Phys. Org. Chem., 3, 1–8 (1990). 10.1002/poc.610030102 CASWeb of Science®Google Scholar K. R. Popper, Conjeturas y Refutaciones, Paidos, Barcelona, 1983, Chapter 11. Google Scholar I. Lee, H. Y. Kim, H. W. Lee, and I. C. Kim, J. Phys. Org. Chem., 2, 35–42 (1989). 10.1002/poc.610020105 CASWeb of Science®Google Scholar H. A. C. McKay, J. Am. Chem. Soc., 65, 702–706 (1943). 10.1021/ja01244a055 CASGoogle Scholar (a) G. B. Behera, J. N. Kar, R. C. Acharya, and M. K. Rout, J. Org. Chem., 38, 2164–2166 (1973). 10.1021/jo00952a011 CASWeb of Science®Google Scholar G. B. Behera and A. Sharma, Bull. Chem. Soc. Jpn., 52, 604–607 (1979). 10.1246/bcsj.52.604 CASWeb of Science®Google Scholar (a) G. Coppens and J. Nasielski, Bull. Soc. Chim. Belg., 71, 5–14 (1962). 10.1002/bscb.19620710102 CASWeb of Science®Google Scholar(b) R. A. Y. Jones and N. Wagstaff, J. Chem. Soc., Chem. Commun., 56–57 (1969). Google Scholar (a) N. L. Allinger and J. C. Graham, J. Org. Chem., 36, 1688–1690 (1971). 10.1021/jo00811a026 CASWeb of Science®Google Scholar(b) J. Sicher, M. Tichý, J. Závada, and J. Krupička, Collect. Czech. Chem. Commun., 33, 1438–1450 (1968). 10.1135/cccc19681438 CASWeb of Science®Google Scholar(c) E. R. A. Peeling and B. D. Stone, Chem. Ind., (Lond.), 1625 (1959). Google Scholar (a) J. Mckenna, Top. Stereochem., 5, 275–315 (1970). 10.1002/9780470147146.ch6 CASGoogle Scholar(b) J. L. Imbach, A. R. Katritzky, and R. A. Kolinski, J. Chem. Soc. (B), 556–562 (1966). Google Scholar(c) R. P. Duke, R. A. Y. Jones, and A. R. Katritzky, J. Chem. Soc., Perkin Trans., 2, 1553–1557 (1973). 10.1039/p29730001553 Web of Science®Google Scholar(d) V. J. Baker, I. D. Blackburne, and A. R. Katritzky, J. Chem. Soc., Perkin Trans., 2, 1557–1561 (1974). 10.1039/p29740001557 Web of Science®Google Scholar(e) V. J. Baker, I. D. Blackburne, A. R. Katritzky, R. A. Kolinski, and Y. Takeuchi, J. Chem. Soc., Perkin Trans., 2, 1563–1568 (1974).

Referência(s)