Efficient recovery and sequencing of mutant genes from mammalian chromosomal DNA.
1986; National Academy of Sciences; Volume: 83; Issue: 10 Linguagem: Inglês
10.1073/pnas.83.10.3356
ISSN1091-6490
AutoresCharles R. Ashman, Pudur Jagadeeswaran, Richard L. Davidson,
Tópico(s)Bacterial Genetics and Biotechnology
ResumoA retroviral shuttle vector was constructed by introducing the Escherichia coli xanthine (guanine) phosphoribosyltransferase gene (gpt) into the pZip-NeoSV(X)1 vector [Cepko, C. L., Roberts, B. E. & Mulligan, R. C. (1984) Cell 37, 1053-1062]. This vector was packaged into infectious virus which then was used to infect a hypoxanthine (guanine) phosphoribosyltransferase-deficient mouse cell line. Cell lines that expressed the gpt gene were isolated, and it was found that these cells contained a single integrated copy of the vector in a proviral form. Treatment of these cell lines with either ethyl methanesulfonate or BrdUrd produced a greater than 10-fold increase in the frequency of 6-thioguanine-resistant (Sgur) mutants. Intact gpt genes have been recovered from a number of Sgur cell lines after COS cell fusion and introduced into E. coli as part of a plasmid. The complete DNA sequences of three mutant genes have been determined. Two of the mutant genes have a single base substitution, whereas the third has a 34-base-pair deletion. This system should be valuable for analyzing mutagenic specificity and the molecular mechanisms of chemical mutagenesis in mammalian cells. A potentially important feature of the system relative to other shuttle-vector systems is that the mutations are induced in genes integrated into mammalian chromosomes rather than in genes existing as part of autonomously replicating plasmids.
Referência(s)