Nonvanishing cohomology and classes of Gorenstein rings
2004; Elsevier BV; Volume: 188; Issue: 2 Linguagem: Inglês
10.1016/j.aim.2003.11.003
ISSN1090-2082
AutoresDavid A. Jorgensen, Liana M. Şega,
Tópico(s)Homotopy and Cohomology in Algebraic Topology
ResumoWe give counterexamples to the following conjecture of Auslander: given a finitely generated module M over an Artin algebra Λ, there exists a positive integer nM such that for all finitely generated Λ-modules N, if ExtΛi(M,N)=0 for all i≫0, then ExtΛi(M,N)=0 for all i⩾nM. Some of our examples moreover yield homologically defined classes of commutative local rings strictly between the class of local complete intersections and the class of local Gorenstein rings.
Referência(s)