Artigo Revisado por pares

Remarks on some quasilinear elliptic equations

1975; Wiley; Volume: 28; Issue: 5 Linguagem: Catalão

10.1002/cpa.3160280502

ISSN

1097-0312

Autores

Jerry L. Kazdan, F. W. Warner,

Tópico(s)

Differential Equations and Boundary Problems

Resumo

Communications on Pure and Applied MathematicsVolume 28, Issue 5 p. 567-597 Article Remarks on some quasilinear elliptic equations Jerry L. Kazdan, Jerry L. Kazdan University of PennsylvaniaSearch for more papers by this authorF. W. Warner, F. W. Warner University of PennsylvaniaSearch for more papers by this author Jerry L. Kazdan, Jerry L. Kazdan University of PennsylvaniaSearch for more papers by this authorF. W. Warner, F. W. Warner University of PennsylvaniaSearch for more papers by this author First published: September 1975 https://doi.org/10.1002/cpa.3160280502Citations: 285AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Bibliography 1 Agmon, S., The Lp approach to the Dirichlet problem, Ann. Scuola Norm. Sup. Pisa, Vol. 13, 1959, pp. 405–448. Google Scholar 2 Agmon, S., Douglis, A., and Nirenberg, L., Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions I-II, Comm. Pure Appl. Math., Vol. 12, 1959, pp. 623–727, 10.1002/cpa.3160120405 Web of Science®Google Scholar Comm. Pure Appl. Math. Vol. 17, 1964, pp. 35–92. 10.1002/cpa.3160170104 Web of Science®Google Scholar 3 Ambrosetti, A., and Prodi, G., On the inversion of some differentiable mappings with singularities between Banach spaces, Ann. di Mat. Pura App., IV, T. 93, 1972, pp. 231–247. 10.1007/BF02412022 Google Scholar 4 Amann, H., A uniqueness theorem for nonlinear elliptic boundary value problems, Arch. Rat. Mech. Anal., Vol. 44, 1972, pp. 178–181. 10.1007/BF00250776 Web of Science®Google Scholar 5 Amann, H., Multiple positive fixed points of asymptotically linear maps, J. Funct. Anal., V. 17, 1974, pp. 174–213. 10.1016/0022-1236(74)90011-1 Google Scholar 6 Bandle, C., Existence theorems, some qualitative results and a priori bounds for a class of nonlinear Dirichlet problems, to appear. Google Scholar 7 Choquet-Bruhat, Y., and Leray, J., Sur le problèeme de Dirichlet, quasilineaire, d'ordre 2, C. R. Acad, Sc., Paris, 274, Ser. A, 1972, pp. 81–85. Google Scholar 8 Crandall, M. G., and Rabinowitz, P. H., Some continuation and variational methods for positive solutions of nonlinear elliptic eigenvalue problems, to appear. Google Scholar 9 Dolph, C. L., Nonlinear integral equations of the Hammerstein type, Tans. Amer. Math. Soc., Vol. 66, 1949, pp. 289–307. Web of Science®Google Scholar 10 Fucik, S., Necas, J., Soucek, J., and Soucek, V., Spectral Analysis of Nonlinear Operators, Springer Lecture Notes in Math. Vol. 346, 1973. Google Scholar 11 Fujita, Hiroshi, On nonlinear equations Δu + eu = 0 and ∂v/∂t = Δv + ev, Bull. A.M.S., Vol. 75, 1969, pp. 132–135. 10.1090/S0002-9904-1969-12175-0 Web of Science®Google Scholar 12 Joseph, D. C., and Lundgren, T. S., Quasilinear Dirichlet problems driven by positive sources, Arch. Rat. Mech. Anal., Vol. 49, 1973, pp. 241–269. 10.1007/BF00250508 Web of Science®Google Scholar 13 Kazdan, Jerry L., and Warner, F. W., Curvature functions for compact 2-manifolds, Ann. of Math., V. 99, 1974, pp. 14–47. 10.2307/1971012 Web of Science®Google Scholar 14 Kazdan, Jerry L., and Warner, F. W., Scalar curvature and conformal deformation of Riemannian structure, J. Diff. Geo, Vol. 10, 1975, pp. 113–134. 10.4310/jdg/1214432678 Google Scholar 15 Keener, J. P., and Keller, H. B., Positive solutions of convex nonlinear eigenvalue problems, to appear. Google Scholar 16 Keller, H. B., and Cohen, D. S., Some positone problems suggested by nonlinear heat generation, J. Math. Mech., Vol. 16, 1967, pp. 1361–1376. Web of Science®Google Scholar 17 Klingelhofer, Klaus, Nonlinear boundary value problems with simple eigenvalue of the linear part, Arch. Rat. Mech. Anal., Vol. 37, 1970, pp. 381–398. 10.1007/BF00249671 Web of Science®Google Scholar 18 Krasnosel'skii, M. A., Topological Methods in the Theory of Nonlinear Integral Equations, Pergamon Press, Oxford, G. B., 1964 (translated from the 1956 Russian edition). Google Scholar 19 Krein, M. G., and Rutman, M. A., Linear operators which leave a cone in Banach space invariant, Amer. Math. Soc. Trans. Series 1, No. 26, 1950 (translated from Uspekhi Mat. (N.S.) 3, 1948, pp. 3–95 ). Google Scholar 20 Landesman, E. M., and Lazer, A. C., Nonlinear perturbations of linear elliptic boundary value problems at resonance, J. Math. Mech., 1970, pp. 609–623. Google Scholar 21 Landesman, E. M., and Lazer, A. C., Linear eigenvalues and a nonlinear boundary value problem, Pacific J. of Math., Vol. 33, 1970, pp. 311–328. 10.2140/pjm.1970.33.311 Web of Science®Google Scholar 22 Mesirov, J. P., Calculus of variations: Perturbations preserving condition (C), Bull. A.M.S., Vol. 80, 1974, pp. 1260–1264. 10.1090/S0002-9904-1974-13707-9 Web of Science®Google Scholar 23 Morrey, C. B., Multiple Integrals in the Calculus of Variations, Grundlehren, Vol. 130, Springer-Verlag, New York, 1966. Google Scholar 24 Nirenberg, L., An application of generalized degree to a class of nonlinear problems, in Troisieme Colloq. Analyse Fonctionelle Liege, Sept. 1970, Centre Belge de Rech. Math., Vander, 1971. Google Scholar 25 Pokhozhaev, S. I., Eigenfunctions of the equation Δu + λf(u) = 0, Soviet Math. Doklady, Vol. 6, 1965, pp. 1408–1411 Google Scholar (translated from the Russian Dokl. Akad. Nauk. SSSR, Tom. 165, 1965, pp. 33–36 ). Web of Science®Google Scholar 26 Pokhozhaev, S. I., On the eigenfunctions of quasilinear elliptic problems, Math. USSR Sbornik, Vol. 11, 1970, pp. 171–188 10.1070/SM1970v011n02ABEH001133 Google Scholar (translated from the Russian Mat. Sbornik, Tom. 82, 124, 1970, No. 2) . Web of Science®Google Scholar 27 Protter, M. H., and Weinberger, H. F., Maximum Principles in Differential Equations, Prentice-Hall, New Jersey, 1967. Web of Science®Google Scholar 28 Rosen, Gerald, Existence of particlelike solutions to nonlinear field theories, J. Math. Phys., Vol. 7, 1966, pp. 2066–2070. 10.1063/1.1704890 CASWeb of Science®Google Scholar 29 Sattinger, D. H., Topics in Stability and Bifurcation Theory, Springer Lecture Notes in Math., Vol. 309, 1973. Google Scholar 30 Schaefer, H., Über die Methode der a priori Schranken, Math. Ann., Vol. 129, 1955, pp. 415–416. 10.1007/BF01362380 Web of Science®Google Scholar 31 Serrin, J., A remark on the preceding paper of Amann, Arch. Rat. Mech. Anal., Vol. 44, 1972, pp. 182–186. 10.1007/BF00250777 Web of Science®Google Scholar 32 Stampacchia, G., On some regular multiple integral problems in the calculus of variations, Comm. Pure Appl. Math., Vol. 16, 1963, pp. 383–421. 10.1002/cpa.3160160403 Google Scholar 33 Rabinowitz, P. H., Variational methods for nonlinear elliptic eigenvalue problems, Indiana Univ. Math. J., Vol. 23, 1974, pp. 729–754. 10.1512/iumj.1974.23.23061 Web of Science®Google Scholar 34 Dancer, E. N., On a nonlinear boundary value problem, Bull. Aust. Math. Soc., to appear. Google Scholar 35 Fucik, S., to appear. Google Scholar 36 Berger, M. S., and Podolak, E., On the solutions of a nonlinear Dirichlet problem, to appear. Google Scholar 37 De Figueiredo, D. G., The Dirichlet Problem for Nonlinear Elliptic Equations: A Hilbert Space Approach, Springer Lecture Notes No. 446, Partial Differential Equations and Related Topics, 1975, pp. 144–165. Google Scholar 38 Payne, L. E., and Weinberger, M. F., New bounds for solutions of second-order elliptic partial differential equations, Pacific J. Math., Vol. 8, 1958, pp. 551–573. 10.2140/pjm.1958.8.551 Google Scholar Citing Literature Volume28, Issue5September 1975Pages 567-597 ReferencesRelatedInformation

Referência(s)