Revisão Acesso aberto Revisado por pares

Hepatic Binding Protein: The Galactose-Specific Receptor of Mammalian Hepatocytes

1983; Lippincott Williams & Wilkins; Volume: 3; Issue: 5 Linguagem: Inglês

10.1002/hep.1840030520

ISSN

1527-3350

Autores

Richard J. Stockert, Anatol G. Morell,

Tópico(s)

Pancreatic function and diabetes

Resumo

HepatologyVolume 3, Issue 5 p. 750-757 ArticleFree Access Hepatic Binding Protein: The Galactose-Specific Receptor of Mammalian Hepatocytes Richard J. Stockert, Corresponding Author Richard J. Stockert Departments of Medicine and Biochemistry and the Liver Research Center, Albert Einstein College of Medicine, Bronx, New York 10461Richard J. Stockert, Ph.D., Ullmann, Room 517, Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461.===Search for more papers by this authorAnatol G. Morell, Anatol G. Morell Departments of Medicine and Biochemistry and the Liver Research Center, Albert Einstein College of Medicine, Bronx, New York 10461Search for more papers by this author Richard J. Stockert, Corresponding Author Richard J. Stockert Departments of Medicine and Biochemistry and the Liver Research Center, Albert Einstein College of Medicine, Bronx, New York 10461Richard J. Stockert, Ph.D., Ullmann, Room 517, Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461.===Search for more papers by this authorAnatol G. Morell, Anatol G. Morell Departments of Medicine and Biochemistry and the Liver Research Center, Albert Einstein College of Medicine, Bronx, New York 10461Search for more papers by this author First published: 1983 https://doi.org/10.1002/hep.1840030520Citations: 105AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat References 1 Morell AG, Van den Hamer CIA, Scheinberg IH, et al. Physical and chemical studies on ceruloplasmin. Preparation of radioactive sialic acid free ceruloplasmin labeled with tritium on terminal D-galactose residues. J Biol Chem 1966; 241: 3745–3749. CASPubMedWeb of Science®Google Scholar 2 Morell AG, Irvine RA, Sternlieb I, et al. Physical and chemical studies on ceruloplasmin. Metabolic studies on sialic acid-free ceruloplasmin in vivo. J Biol Chem 1968; 243: 155–159. CASPubMedWeb of Science®Google Scholar 3 Van den Hamer CJA, Morell AG, Scheinberg IH, et al. Physical and chemical studies on ceruloplasmin. The role of galactosyl residues in the clearance of ceruloplasmin from the circulation. J Biol Chem 1970; 245: 4397–4403. CASPubMedWeb of Science®Google Scholar 4 Morell AG, Gregoriadis G, Scheinberg IH, et al. The role of sialic acid in determining the survival of glycoproteins in the circulation. J Biol Chem 1971; 246: 1461–1467. 10.1016/S0021-9258(19)76994-4 CASPubMedWeb of Science®Google Scholar 5 Gregoriadis G, Morell AG, Sternlieb I, et al. Catabolism of desialy-lated ceruloplasmin in the liver. J Biol Chem 1970; 245: 5833–5837. CASPubMedWeb of Science®Google Scholar 6 Pricer WE Jr, Ashwell G. The binding of desialylated glycoproteins by plasma membranes of rat liver. J Biol Chem 1971; 246: 4825–4833. CASPubMedWeb of Science®Google Scholar 7 Morell AG, Scheinberg IH. Solubilization of hepatic binding sites for asialoglycoproteins. Biochem Biophys Res Commun 1972; 48: 808–815. 10.1016/0006-291X(72)90679-1 CASPubMedWeb of Science®Google Scholar 8 Hudgin RL, Pricer WE Jr, Ashwell G, et al. The isolation and properties of a rabbit liver binding protein specific for asialoglycoproteins. J Biol Chem 1974; 249: 5536–5543. CASPubMedWeb of Science®Google Scholar 9 Tanabe T, Pricer WE Jr, Ashwell G. Subcellular membrane topology and turnover of a rat hepatic binding protein specific for asialoglycoproteins. J Biol Chem 1979; 254: 1038–1043. CASPubMedWeb of Science®Google Scholar 10 Baenziger JV, Maynard Y. Human hepatic lectin. J Biol Chem 1980; 255: 4607–4613. CASPubMedWeb of Science®Google Scholar 11 Kawaski T, Ashwell G. Chemical and physical properties of an hepatic membrane protein that specifically binds asialoglycoproteins. J Biol Chem 1976; 251: 1296–1302. PubMedWeb of Science®Google Scholar 12 Kawasaki T, Ashwell G. Carbohydrate structure of glycopeptides isolated from an hepatic membrane binding protein specific for asialoglycoproteins. J Biol Chem 1976; 251: 5292–5299. CASPubMedWeb of Science®Google Scholar 13 Baumann H, Hou H, Doyle D. Insertion of biologically active membrane proteins from rat liver into the plasma membrane of mouse fibroblasts. J Biol Chem 1980; 255: 10001–10012. CASPubMedWeb of Science®Google Scholar 14 Schwartz AL, Marshak-Rothstein A, Rup D, et al. Identification and quantification of the rat hepatocyte asialoglycoprotein receptor. Proc Natl Acad Sci USA 1981; 78: 3348–3352. 10.1073/pnas.78.6.3348 CASPubMedWeb of Science®Google Scholar 15 Stockert RJ, Haimes HB, Morell AG, et al. Endocytosis of asialog-lycoprotein-enzyme conjugates by hepatocytes. Lab Invest 1980; 43: 556–563. CASPubMedWeb of Science®Google Scholar 16 Haimes HB, Stockert RJ, Morell AG, et al. Carbohydrate-specified endocytosis: Localization of ligand in the lysosomal compartment. Proc Natl Acad Sci USA 1981; 78: 6936–6939. 10.1073/pnas.78.11.6936 CASPubMedWeb of Science®Google Scholar 17 Hubbard AL, Stukenbrok H. An electron microscope autoradiographic study of the carbohydrate recognition system in rat liver. J Cell Biol 1979; 83: 65–81. 10.1083/jcb.83.1.65 CASPubMedWeb of Science®Google Scholar 18 Wall DA, Wilson G, Hubbard AL. The galactose-specific recognition system of mammalian liver: the route of ligand internalization in rat hepatocytes. Cell 1980; 21: 79–93. 10.1016/0092-8674(80)90116-6 CASPubMedWeb of Science®Google Scholar 19 Pearse B. Coated pits. TIBS 1980; 5: 131–134. 10.1016/0968-0004(80)90055-9 CASWeb of Science®Google Scholar 20 Maxfield FR, Schlessinger J, Schechter Y, et al. Collection of insulin, EGF and α2-macroglobin in the same patches on the surface of cultured fibroblasts and common internalization. Cell 1978; 14: 805–810. 10.1016/0092-8674(78)90336-7 CASPubMedWeb of Science®Google Scholar 21 Pertoft H, Warmegarel B, Hook M. Heterogeneity of lysosomes originating from rat liver parenchymal cells. Biochem 1978; 174: 309–317. 10.1042/bj1740309 CASPubMedWeb of Science®Google Scholar 22 Thomas P, Toth CA, Zamcheck N. The mechanism of biliary excretion of α-acid glycoprotein in the rat. Hepatology 1982; 2: 800–803. 10.1002/hep.1840020610 CASPubMedWeb of Science®Google Scholar 23 Regoeczi E, Chindemi PA, Debanue MT, et al. Dual nature of the hepatic lectin pathway for human asialotransferin type 3 in the rat. J Biol Chem 1982; 257: 5431–5436. CASPubMedWeb of Science®Google Scholar 24 Jackson GDF, Lemaitre-Coelho I, Vaerman JP, et al. Rapid disappearance from serum of intravenoudy injected rat myeloma IgA and its secretion into bile. Eur J Immunol 1978; 7: 123–130. 10.1002/eji.1830080210 Web of Science®Google Scholar 25 Mullock BM, Dobrota M, Hinton R. Sources of the proteins of rat bile. Biophys Acta 1978; 543: 497–507. 10.1016/0304-4165(78)90304-5 CASPubMedWeb of Science®Google Scholar 26 Renston RH, Jones AL, Christiansen WD, et al. Evidence for a vesicular transport mechanism in hepatocytes for biliary secretion of immunoglobulin A. Science 1980; 208: 1276–1278. 10.1126/science.7375938 CASPubMedWeb of Science®Google Scholar 27 Mullock BM, Hinton RH, Dobrota M, et al. Endocytic vesicles in liver carry polymeric IgA from serum to bile. Biochim Biophys Acta 1979; 587: 381–389. 10.1016/0304-4165(79)90442-2 CASPubMedWeb of Science®Google Scholar 28 Fisher MM, Nagy B, Bazin H, et al. Biliary transport of IgA: role of secretory component. Proc Natl Acad Sci USA 1979; 76: 2008–2012. 10.1073/pnas.76.4.2008 CASPubMedWeb of Science®Google Scholar 29 Orlans E, Peppard J, Fry JF, et al. Secretory component as the receptor for polymeric IgA on hepatocytes. J Exp Med 1979; 150: 1577–1581. 10.1084/jem.150.6.1577 CASPubMedWeb of Science®Google Scholar 30 Stockert RJ, Kressner MS, Collins JC, et al. IgA interaction with the asialoglycoprotein receptor. Proc Natl Acad Sci USA 1982; 79: 6229–6231. 10.1073/pnas.79.20.6229 CASPubMedWeb of Science®Google Scholar 31 Hatton MW, Marz L, Berry LR, et al. Bi- and tri-antennary transferrin glycopeptides and their affinities for the hepatic lectin specific for asialo-glycoproteins. Biochem J 1979; 181: 633–638. 10.1042/bj1810633 CASPubMedWeb of Science®Google Scholar 32 Tolleshang H, Chindemi PA, Regoeczi E. Diacytosis of human asialotransferrin type 3 by isolated rat hepatocytes. J Biol Chem 1981; 256: 6526–6528. PubMedWeb of Science®Google Scholar 33 Baenziger JV, Fiete D. Galactose and N-acetyl-galactosamine-specific endocytosis of glycopeptides by isolated rat hepatocytes. Cell 1980; 22: 611–620. 10.1016/0092-8674(80)90371-2 CASPubMedWeb of Science®Google Scholar 34 Connolly DT, Townsend RR, Kawaguchi K, et al. Binding and endocytosis of cluster glycosides by rabbit hepatocytes. J Biol Chem Vol. 3, No. 5, 1983 Google Scholar J Biol Chem 1982; 257: 939–945. CASPubMedWeb of Science®Google Scholar 35 Steer CJ, Ashwell G. Studies on a mammalian hepatic binding protein specific for asialoglycoproteins: evidence for receptor recycling in isolated rat hepatocytes. J Biol Chem 1980; 255: 3008–3013. CASPubMedWeb of Science®Google Scholar 36 Regoeczi E, Debanne MT, Hatton MWC, et al. Elimination of asialofetuin and asialoorosomucoid by the intact rat. Biochim Biophys Acta 1978; 541: 372–384. 10.1016/0304-4165(78)90196-4 CASPubMedWeb of Science®Google Scholar 37 Tolleshang H, Berg T. Chloroquine reduces the number of asialog-lycoprotein receptors in the hepatocyte plasma membrane. Biochem Pharmacol 1979; 28: 2912–2922. Google Scholar 38 Pricer WEJ, Ashwell G. Subcellular distribution of a mammalian hepatic binding protein specific for asialoglycoproteins. J Biol Chem 1976; 251: 7539–7544. CASPubMedWeb of Science®Google Scholar 39 Riordan JR, Mitchell L, Slavik M. The binding of asialoglycopro-tein to isolated golgi apparatus. Biochem Biophys Res Commun 1974; 59: 1373–1379. 10.1016/0006-291X(74)90465-3 CASPubMedWeb of Science®Google Scholar 40 Sawamura T, Nakada H, et al. Some properties of a binding protein specific for asialoglycoproteins and its distribution in rat liver microsomes. Cell Struct Func 1980; 5: 133–146. 10.1247/csf.5.133 CASWeb of Science®Google Scholar 41 Doyle D, Hou E, Warren R. Transfer of the hepatocyte receptor for serum asialoglycoproteins to the plasma membrane of a fibroblast. J Biol Chem 1979; 254: 6853–6856. CASPubMedWeb of Science®Google Scholar 42 Stockert RJ, Gartner, U., Morell AG and Wolkoff AW. Effect of receptor-specific antibody on the uptake of desialylated glycoproteins in the isolated perfused rat liver. J Biol Chem 1980; 255: 9028–9029. CASPubMedWeb of Science®Google Scholar 43 Stockert RJ, Howard DJ, Morell AG, et al. Functional segregation of hepatic receptors for asialoglycoproteins during endocytoses. J Biol Chem 1980; 255: 9028–9029. CASPubMedWeb of Science®Google Scholar 44 Weigel PH. Evidence that the hepatic receptor is internalized during endocytosis and that receptor recycling can be uncoupled from endocytosis at low temperature. Biochem Biophys Res Commun 1981; 1011: 1419–1425. 10.1016/0006-291X(81)91605-3 CASWeb of Science®Google Scholar 45 Ciechanover A, Schwartz AL, Lodish HF. The asialoglycoprotein receptor internalizes and recycles independently of the transferrin and insulin receptor. Cell 1983; 32: 267–275. 10.1016/0092-8674(83)90517-2 CASPubMedWeb of Science®Google Scholar 46 Bridges K, Harford J, Klausner R, et al. Fate of receptor and ligand during endocytosis of asialoglycoproteins by isolated hepatocytes. Proc Natl Acad Sci 1982; 79: 350–354. 10.1073/pnas.79.2.350 CASPubMedWeb of Science®Google Scholar 47 Geuze HJ, Slot JW, Strous GJAM, et al. Intracellular site of asialoglycoprotein receptor-ligand uncoupling. Cell 1983; 32: 277–287. 10.1016/0092-8674(83)90518-4 CASPubMedWeb of Science®Google Scholar 48 Hickman J, Ashwell G. Studies on the hepatic binding of asialoglycoproteins by hepatoma tissue and by isolated hepatocytes. In: JM Tager, GJM Hooghwinkel, WTh Daems, eds. Enzyme therapy in lysosomal storage diseases. Amsterdam: North-Holland, 1974. Google Scholar 49 Gartner U, Stockert RJ, Morell AG, et al. Modulation of the transport of bilirubin and asialoorosomucoid during liver regeneration. Hepatology 1981; 1: 99–106. 10.1002/hep.1840010203 CASPubMedWeb of Science®Google Scholar 50 Howard DJ, Stockert RJ, Morell AG. Asialoglycoprotein receptor in hepatic regeneration. J Biol Chem 1982; 257: 2856–2858. CASPubMedWeb of Science®Google Scholar 51 Schwartz AL, Fridovich S, Knowles E, et al. Characterization of the asialoglycoprotein receptor in a continuous hepatoma line. J Biol Chem 1981; 256: 8878–8881. CASPubMedWeb of Science®Google Scholar 52 Theilmann L, Teicher L, Schildkraut CS, et al. Growth dependent expression of a cell surface glycoprotein. Biochim Biophys Acta 1983; 762: 475–477. 10.1016/0167-4889(83)90015-0 CASPubMedWeb of Science®Google Scholar 53 Gartner U, Stockert RJ, Levine WG, et al. Effect of nafenopin on the uptake of bilirubin and sulfobromophthalein by isolated perfused rat liver. Gastroenterology 1982; 83: 1163–1169. 10.1016/S0016-5085(82)80123-6 CASPubMedWeb of Science®Google Scholar 54 Marshall JS, Green AM, Pensky J, et al. Measurement of circulatory desialylated glycoproteins and correlation with hepatocellular damage. J Clin Invest 1974; 54: 555–562. 10.1172/JCI107792 CASPubMedWeb of Science®Google Scholar 55 Lunney J. Studies on the regulation of serum glycoproteins homeostasis. Doctoral dissertation. Johns Hopkins University, 1976, Baltimore, Maryland. Google Scholar 56 Arima T, Montoyama Y, Yamamoto T, et al. Serum glycoproteins in the liver diseases. Gastroenterol Jpn 1978; 13: 503–506. CASPubMedGoogle Scholar 57 Lunney J, Ashwell G. A hepatic receptor of avian origin capable of binding specifically modified glycoproteins. Proc Natl Acad Sci USA 1976; 73: 341–343. 10.1073/pnas.73.2.341 CASPubMedWeb of Science®Google Scholar 58 Marshall JS, Stanford W. Serum inhibitors of desialylated glycoproteins binding to hepatocyte membranes. Biochim Biophys Acta 1978; 543: 41–52. 10.1016/0304-4165(78)90452-X CASPubMedWeb of Science®Google Scholar 59 Bordas MC, Serbource-Goquel NS, Feger JM, et al. Evaluation of degree of desialylation of serum α1-acid glycoprotein and α-antitrypsin. Clin Chim Acta 1982; 125: 311–318. 10.1016/0009-8981(82)90262-5 CASPubMedWeb of Science®Google Scholar 60 Stockert RJ, Morell AG and Scheinberg IH. Mammalian hepatic lectin. Science 1974; 186: 365–366. 10.1126/science.186.4161.365 CASPubMedWeb of Science®Google Scholar 61 Stockert RJ, Becker FF. Diminished hepatic binding protein for desialylated glycoproteins during chemical hepatocarcinogenesis. Cancer Res 1980; 40: 3632–3634. CASPubMedWeb of Science®Google Scholar 62 Sawamura T, Kawasato S, Shiozaki Y, et al. Decrease of a hepatic binding protein specific for asialoglycoproteins with accumulation of serum asialoglycoproteins in galactosamine treated rats. Gastroenterology 1981; 81: 527–533. CASPubMedWeb of Science®Google Scholar 63 Dodeur M, Durand D, Dumont J, et al. Effects of streptozotocin-induced diabetes mellitus on the binding and uptake of asialoorosomucoid by isolated hepatocytes from rats. Eur J Biochem 1982; 123: 383–387. 10.1111/j.1432-1033.1982.tb19780.x CASPubMedWeb of Science®Google Scholar 64 Rogers JC, Kornfeld S. Hepatic uptake of proteins coupled to fetuin glycopeptide. Biochem Biophys Res Commun 1971; 45: 622–629. 10.1016/0006-291X(71)90462-1 CASPubMedWeb of Science®Google Scholar 65 Chang T-M, Kullberg D. Studies of the mechanism of cell intoxication by diphtheria toxin fragment A-asialoorosomucoid hybrid toxins. J Biol Chem 1982; 257: 12563–12572. CASPubMedWeb of Science®Google Scholar 66 Cawley DB, Simpson DL, Herschman HR. Asialoglycoprotein receptor mediates the toxic effects of an asialofetuin-diphtheria toxin fragment. A conjugate on cultured rat hepatocytes. Proc Natl Acad Sci USA 1981; 78: 3383–3387. 10.1073/pnas.78.6.3383 CASPubMedWeb of Science®Google Scholar 67 Attie AD, Pitman RC, Steinberg D. Metabolism of native and of lactosylated low-density lipoproteins. Evidence for two pathways for catabolism of exgenous proteins in rat hepatocytes. Proc Natl Acad Sci USA 1980; 77: 5923–5927. 10.1073/pnas.77.10.5923 CASPubMedWeb of Science®Google Scholar 68 Fiume L, Mattioli A, Balboni PG, et al. Enhanced inhibition of virus DNA synthesis in hepatocytes by triphorothymidine coupled to asialofetuin. FEBS Lett 1979; 103: 47–51. 10.1016/0014-5793(79)81247-8 CASPubMedWeb of Science®Google Scholar 69 Fiume L, Mattioli A, Busi C, et al. Selective inhibition of ectromelia virus DNA synthesis in hepatocytes by adenine-9-B-D arabinofur-anoside and adenine-9-B-D arabinofuranoside conjugated to asialo-fetiun. FEBS Lett 1980; 116: 185–188. 10.1016/0014-5793(80)80639-9 CASPubMedWeb of Science®Google Scholar 70 Wu GY, Wu HC, Stockert RJ. A model for specific rescue of normal hepatocytes during methotrexate treatment of hepatic malignancy. Proc Natl Acad Sci 1983; 80: 3078–3080. 10.1073/pnas.80.10.3078 CASPubMedWeb of Science®Google Scholar 71 Castro Z, Herbert V, Wasserman LR. Blocking of hog intrinsic factor by human gastric juice and certain mucopolysaccharides including blood group substance. J Clin Invest 1961; 40: 66–71. 10.1172/JCI104238 CASPubMedWeb of Science®Google Scholar 72 Burger RL, Schneider RJ, Mehlman CS, et al. Human plasma R-type vitamin Bi2 binding proteins. J Biol Chem 1975; 250: 7707–7713. CASPubMedWeb of Science®Google Scholar 73 Novogrodsky A, Ashwell G. Lymphocyte mitogenesis induced by a mammalian liver protein that specifically binds desialylated glycoproteins. Proc Natl Acad Sci USA 1977; 77: 676–678. 10.1073/pnas.74.2.676 CASWeb of Science®Google Scholar 74 Vierling JM, Steer CJ, Hickman JW, et al. Cell-mediated cytotoxicity of desialylated human lymphocytes induced by a mitogenic mammalian liver protein. Gastroenterology 1978; 75: 456–461. CASPubMedWeb of Science®Google Scholar 75 Kolb H, Kolb-Bachofen V, Schlepper-Schafer J. Cell contacts mediated by D-galactose-specific lectins on liver cells. Biol Cellu-laire 1979; 36: 301–308. CASWeb of Science®Google Scholar 76 Kolb H, Vogt D, Herbertz L, et al. The galactose-specific lectins on rat hepatocytes and Kupffer cells have identical binding characteristics. Hoppe Seylers Z Physiol Chem 1980; 361: 1747–1750. 10.1515/bchm2.1980.361.2.1029 CASPubMedWeb of Science®Google Scholar 77 Neufeld EF, Ashwell G. Carbohydrate recognition systems for receptor mediated pinocytosis in the biochemistry of glycoproteins and proteoglycans, Lenarz WJ, ed., 241–266. Google Scholar 78 Priell JP, Pizzo SV, Glagow LR, et al. Hepatic receptor that specifically binds olyosaccharides containing fucosyl 1–3. N-ace-tyglucosamine linkages. Proc Natl Acad Sci USA 1978; 75: 2215–2219. 10.1073/pnas.75.5.2215 CASPubMedWeb of Science®Google Scholar 79 Stahl P, Schlesinger PH, Rodman JS, et al. Evidence for specific recognition sites mediating clearance of lysosomal enzymes in vivo. Proc Natl Acad Sci USA 1976; 73: 4045–4051. 10.1073/pnas.73.11.4045 CASPubMedWeb of Science®Google Scholar 80 Stockert RJ, Morell AG, Scheinberg IH. The existence of a second route for the transfer of certain glycoproteins from the circulation into the liver. Biochem Biophys Res Commun 1976; 768: 988–993. 10.1016/0006-291X(76)91243-2 CASWeb of Science®Google Scholar 81 Kawasaki T, Ashwell G. Isolation and characterization of an avain hepatic binding protein specific for iV-acetyl glucosamine-termi-nated glycoproteins. J Biol Chem 1977; 252: 6536–6543. CASPubMedWeb of Science®Google Scholar Citing Literature Volume3, Issue51983Pages 750-757 ReferencesRelatedInformation

Referência(s)
Altmetric
PlumX