Artigo Acesso aberto Revisado por pares

Phosphorylation of Adult Type Sept5 (CDCrel-1) by Cyclin-dependent Kinase 5 Inhibits Interaction with Syntaxin-1

2007; Elsevier BV; Volume: 282; Issue: 11 Linguagem: Inglês

10.1074/jbc.m609457200

ISSN

1083-351X

Autores

Makoto Taniguchi, Masato Taoka, Makoto Itakura, Akiko Asada, Taro Saito, Makoto Kinoshita, Masami Takahashi, Toshiaki Isobe, Shin‐ichi Hisanaga,

Tópico(s)

Genetic Neurodegenerative Diseases

Resumo

Increasing evidence implicates cyclin-dependent kinase 5 (Cdk5) in neuronal synaptic function. We searched for Cdk5 substrates in synaptosomal fractions prepared from mouse brains. Mass spectrometric analysis after two-dimensional SDS-PAGE identified several synaptic proteins phosphorylated by Cdk5-p35; one protein identified was Sept5 (CDCrel-1). Although septins were isolated originally as cell division-related proteins in yeast, Sept5 is expressed predominantly in neurons and is implicated in exocytosis. We confirmed that Sept5 is phosphorylated by Cdk5-p35 in vitro and identified Ser17 of adult type Sept5 (Sept5_v1) as a major phosphorylation site. We found that Ser17 of Sept5_v1 is phosphorylated in mouse brains. Coimmunoprecipitation from synaptosomal fractions and glutathione S-transferase-syntaxin-1A pulldown assays of Sept5_v1 expressed in COS-7 cells showed that phosphorylation of Sept5_v1 by Cdk5-p35 decreases the binding to syntaxin-1. These results indicate that the interaction of Sept5 with syntaxin-1 is regulated by the phosphorylation of Sept5_v1 at Ser17 by Cdk5-p35.

Referência(s)