Enzymes of the thiol‐dependent hydroperoxide metabolism in pathogens as potential drug targets
2003; Wiley; Volume: 17; Issue: 1-4 Linguagem: Inglês
10.1002/biof.5520170109
ISSN1872-8081
Autores Tópico(s)Genomics, phytochemicals, and oxidative stress
ResumoBioFactorsVolume 17, Issue 1-4 p. 83-92 Article Enzymes of the thiol-dependent hydroperoxide metabolism in pathogens as potential drug targets† Heike Budde, Heike Budde Department of Biochemistry, Technical University of Braunschweig, Mascheroder Weg 1, D-38124 Braunschweig, GermanySearch for more papers by this authorLeopold Flohé, Leopold Flohé Department of Biochemistry, Technical University of Braunschweig, Mascheroder Weg 1, D-38124 Braunschweig, GermanySearch for more papers by this author Heike Budde, Heike Budde Department of Biochemistry, Technical University of Braunschweig, Mascheroder Weg 1, D-38124 Braunschweig, GermanySearch for more papers by this authorLeopold Flohé, Leopold Flohé Department of Biochemistry, Technical University of Braunschweig, Mascheroder Weg 1, D-38124 Braunschweig, GermanySearch for more papers by this author First published: 16 December 2008 https://doi.org/10.1002/biof.5520170109Citations: 8 † This article also appeared in Thiol Metabolism and Redox Regulation of Cellular Functions, A. Pompella, G. Bánhegyi and M. Wellman-Rousseau, eds, IOS Press, Amsterdam. AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat References 1 M. L. Cohen, Changing patterns of infectious disease, Nature 406 (2000), 762–767. 2 B. R. Bloom, On the particularity of pathogens, Nature 406 (2000), 760–761. 3 B. M. Babior, R. S. Kipnes and J. T. Curnutte, Biological defense mechanisms: the production by leukocytes of superoxide, a potential bacterial agent, J. Clin. Invest. 52 (1973), 741–744. 4 B. M. Babior, Phagocytes and oxidative stress, Am. J. Med. 109 (2000), 33–44. 5 J. S. Beckman, W. H. Koppenol and Nitric Oxide, Superoxide and peroxynitrite: the good, the bad and the ugly, Am. J. Physiol. 271 (1996), C1424–C1437. 6 S. J. Klebanoff and H. Rosen, The role of myeloperoxidase in the microbicidal activity of polymorphonuclear leukocytes, in: Oxygen free radicals and tissue damage, C. F. Symp, ed., Excerpta Media, Amsterdam/Oxford/NewYork, 1978, pp. 263–284. 7 R. Brigelius-Flohé, M. Maiorino, F. Ursini, L. Flohé, Selenium: An Antioxidant? in: Handbook of Antioxidants, E. Cadenas, L. Packer eds, Marcel Dekker, Basel, New York, 2002, pp. 633–664. 8 L. Flohé, The Achilles' heel of trypanosomatids: trypanothione-mediated hydroperoxide metabolism, Biofactors 8 (1998), 87–91. 9 A. H. Fairlamb, Future prospects for the chemotherapy of Chagas' disease Medicina, B Aires) 59 (1999), 179–187. 10 L. Flohé, H. J. Hecht and P. Steinert, Glutathione and trypanothione in parasitic hydroperoxide metabolism, Free Rad. Biol. Med. 27 (1999), 966–984. 11 R. L. Krauth-Siegel, G. H. Coombs, Enzymes of parasite thiol metabolism as drug targets, Parasitol. Today 15 (1999), 404–409. 12 G. R. Schonbaum, B. Chance, Catalase, in: The Enzymes, P. D. Boyer ed., Academic Press, New York, San Francisco, London, 1976, pp. 363–408. 13 H. Sies, C. Gerstenecker, H. Menzel, L. Flohé, Oxidation in the NADP system and release of GSSG from hemoglobin-free perfused rat liver during peroxidatic oxidation of glutathione by hydroperoxides, FEBS Lett 27 (1972), 171–175. 14 L. Flohé, R. Brigelius-Flohé, Selenoproteins of the glutathione system, in: Selenium, D. L. Hatfield ed., Its Molecular Biology and Role in Human Health. Kluwer Academic Publishers, Boston/Dordrecht/London, 2001, pp. 157–178. 15 H. Jaeschke, Y.-S. Ho, M. A. Fischer, J. A. Lawson and A. Farhood, Glutathione peroxidase-deficient mice are more susceptible to neutrophil-mediated hepatic parenchymal cell injury during endotoxemia: importance of an intracellular oxidant stress, Hepatology 29 (1999), 443–450. 16 F. Weitzel and A. Wendel, Selenoenzymes regulate the activity of leukocyte 5-lipoxygenase via the peroxide tone, J. Biol. Chem. 268 (1993), 6288–6292. 17 R. Brigelius-Flohé, B. Friedrichs, S. Maurer, M. Schultz and R. Streicher, Interleukin-1-induced nuclear factor kappa B activation is inhibited by overexpression of phospholipid hydroperoxide glutathione peroxidase in a human endothelial cell line, Biochem. J. 328 (1997), 199–203. 18 R. S. Esworthy, R. Aranda, M. G. Martin, J. H. Doroshow, S. W. Binder and F. F. Chu, Mice with combined disruption of Gpx1 and Gpx2 genes have colitis, Am. J. Physiol. Gastrointest. Liver Physiol. 281 (2001), G848–G855. 19 H. Sies, V. S. Sharov, L. O. Klotz and K. Briviba, Glutathione peroxidase protects against peroxynitrite-mediated oxidations. A new function for selenoproteins as peroxynitrite reductase, J. Biol. Chem. 272 (1997), 27812–27817. 20 Y. Fu, H. Sies and X. G. Lei, Opposite roles of selenium-dependent glutathione peroxidase-1 in superoxide generator diquat-and peroxynitrite-induced apoptosis and signaling, J. Biol. Chem. 276 (2001), 43004–43009. 21 G. E. Arteel and H. Sies, The biochemistry of selenium and the glutathione system, Environmental Toxycology and Pharmacology 10 (2001), 153–158. 22 K. E. Hill, R. F. Burk and P. Selenoprotein, in: Selenium, D. H. Hatfield ed., Its Molecular Biology and Role in Human Health. Kluwer Academic Publishers, Boston/Dordrecht/London, 2001, pp. 123–135. 23 S. G. Rhee, S. W. Kang, L. E. Netto, M. S. Seo and E. R. Stadtman, Afamilyofnovel peroxidases, peroxiredoxins, Biofactors 10 (1999), 207–209. 24 A. B. Fisher, C. Dodia, Y. Manevich, J. W. Chen and S. I. Feinstein, Phospholipid hydroperoxides are substrates for non-selenium glutathione peroxidase, J. Biol. Chem. 274 (1999), 21326–21334. 25 B. Hofmann, H. J. Hecht, L. Flohé, Peroxiredoxins, Biol. Chem. 383 (2002), 347–364. 26 A. H. Fairlamb and A. Cerami, Metabolism and functions of trypanothione in the Kinetoplastida, Annu. Rev. Microbiol. 46 (1992), 695–729. 27 K. Koenig, U. Menge, M. Kiess, V. Wray and L. Flohé, Convenient isolation and kinetic mechanism of glutathionylsper-midine synthetase from Crithidia fasciculata, J. Biol. Chem. 272 (1997), 11908–11915. 28 E. Tetaud, F. Manai, M. P. Barrett, K. Nadeau, C. T. Walsh and A. H. Fairlamb, Cloning and characterization of the two enzymes responsible for trypanothione biosynthesis in Crithidia fasciculata, J. Biol. Chem. 273 (1998), 19383–19390. 29 M. A. Ouaissi, J. F. Dubremetz, R. Schoneck, R. Fernandez-Gomez, R. Gomez-Corvera, O. Billaut-Mulot, A. Taibi, M. Loyens, A. Tartar and C. Sergheraert, Trypanosoma cruzi: a 52-kDa protein sharing sequence homology with glutathione S-transferase is localized in parasite organelles morphologically resembling reservosomes, Exp. Parasitol. 81 (1995), 453–461. 30 E. Nogoceke, D. U. Gommel, M. Kiess, H. M. Kalisz and L. Flohé, A unique cascade of oxidoreductases catalyses trypanothione-mediated peroxide metabolism in Crithidia fasciculata, Biol. Chem. 378 (1997), 827–836. 31 E. Tetaud, C. Giroud, A. R. Prescott, D. W. Parkin, D. Baltz, N. Biteau, T. Baltz and A. H. Fairlamb, Molecular characterisation of mitochondrial and cytosolic trypanothione-dependent tryparedoxin peroxidases in Trypanosoma brucei, Mol. Biochem. Parasitol. 116 (2001), 171–183. 32 N. M. el-Sayed, C. M. Alarcon, J. C. Beck, V. C. Sheffield and J. E. Donelson, CDNA expressed sequence tags of Try-panosoma brucei rhodesiense provide new insights into the biology of the parasite, Mol. Biochem. Parasitol. 73 (1995), 75–90. 33 S. A. Guerrero, J. A. Lopez, P. Steinert, M. Montemartini, H. M. Kalisz, W. Colli, M. Singh, M. J. Alves and L. Flohé, His-tagged tryparedoxin peroxidase of Trypanosoma cruzi as a tool for drug screening, Appl. Microbiol. Biotechnol. 53 (2000), 410–414. 34 J. A. Lopez, T. U. Carvalho, W. de Souza, L. Flohé, S. A. Guerrero, M. Montemartini, H. M. Kalisz, E. Nogoceke, M. Singh, M. J. Alves and W. Colli, Evidence for a trypanothione-dependent peroxidase system in Trypanosoma cruzi, Free Rad. Biol. Med. 28 (2000), 767–772. 35 S. R. Wilkinson, N. J. Temperton, A. Mondragon and J. M. Kelly, Distinct mitochondrial and cytosolic enzymes mediate trypanothione-dependent peroxide metabolism in Trypanosoma cruzi, J. Biol. Chem. 275 (2000), 8220–8225. 36 M. P. Levick, E. Tetaud, A. H. Fairlamb and J. M. Blackwell, Identification and characterisation of a functional peroxidoxin from Leishmania major, Mol. Biochem. Parasitol. 96 (1998), 125–137. 37 L. Flohé, H. Budde, K. Bruns, H. Castro, J. Clos, B. Hofmann, S. Kansal-Kalavar, D. Krumme, U. Menge, K. Plank-Schumacher, H. Sztajer, J. Wissing, C. Wylegalla and H. J. Hecht, Tryparedoxin peroxidase of Leishmania donovani: molecular cloning, heterologous expression, specificity, and catalytic mechanism, Arch. Biochem. Biophys. 397 (2002), 324–335. 38 S. Krieger, W. Schwarz, M. R. Ariyanayagam, A. H. Fairlamb, R. L. Krauth-Siegel and C. Clayton, Trypanosomes lacking trypanothione reductase are avirulent and show increased sensitivity to oxidative stress, Mol. Microbiol. 35 (2000), 542–552. 39 J. Tovar, M. L. Cunningham, A. C. Smith, S. L. Croft and A. H. Fairlamb, Downregulation of Leishmania donovani trypanothione reductase by heterologous expression of a transdominant mutant homologue: effect on parasite intracellular survival, Proc. Natl. Acad. Sci. USA 95 (1998), 5311–5316. 40 M. Dormeyer, N. Reckenfelderbäumer, H. Lüdemann and R. L. Krauth-Siegel, Trypanothione-dependent synthesis of deoxyribonucleotides by Trypanosoma brucei ribonucleotide reductase, J. Biol. Chem. 276 (2001), 10602–10606. 41 N. Reckenfelderbäumer, H. Lüdemann, H. Schmidt, D. Steverding and R. L. Krauth-Siegel, Identification and functional characterization of thioredoxin from Trypanosoma brucei brucei, J. Biol. Chem. 275 (2000), 7547–7552. 42 P. Steinert, K. Dittmar, H. M. Kalisz, M. Montemartini, E. Nogoceke, M. Rohde, M. Singh and L. Flohé, Cytoplasmic localization of the trypanothione peroxidase system in Crithidia fasciculata, Free Rad. Biol. Med. 26 (1999), 844–849. 43 S. Wilkinson, D. J. Meyer, M. C. Taylor, E. V. Bromley, M. A. Miles and J. M. Kelly, The Trypanosoma cruzi enzyme TcGPxI is a glycosomal peroxidase and can be linked to trypanothione reduction by glutathione or tryparedoxin, J. Biol. Chem. (2002), in press. 44 B. Gamain, G. Langsley, M. N. Fourmaux, J. P. Touzel, D. Camus, D. Dive and C. Slomianny, Molecular characterization of the glutathione peroxidase gene of the human malaria parasite Plasmodium falciparum, Mol. Biochem. Parasitol. 78 (1996), 237–248. 45 H. Sztajer, B. Gamain, K. D. Aumann, C. Slomianny, K. Becker, R. Brigelius-Flohé, L. Flohé, The putative glutathione peroxidase gene of Plasmodium falciparum codes for a thioredoxin peroxidase, J. Biol. Chem. 276 (2001), 7397–7403. 46 S. Rahlfs and K. Becker, Thioredoxin peroxidases of the malarial parasite Plasmodium falciparum, Eur. J. Biochem. 268 (2001), 1404–1409. 47 S. Rahlfs, M. Fischer and K. Becker, Plasmodium falciparum possesses a classical glutaredoxin and a second, glutaredoxin-like protein with a PICOT homology domain, J. Biol. Chem. 276 (2001), 37133–37140. 48 M. R. Ariyanayagam and A. H. Fairlamb, Entamoeba histolytica lacks trypanothione metabolism, Mol. Biochem. Parasitol. 103 (1999), 61–69. 49 R. N. Ondarza, E. M. Tamayo, G. Hurtado, E. Hernandez and A. Iturbe, Isolation and purification of glutathionyl-spermidine and trypanothione from Entamoeba histolytica, Arch. Med. Res. 28 (1997), 73–75. 50 R. N. Ondarza, A. Iturbe, G. Hurtado, E. Tamayo, M. Ondarza and E. Hernandez, Entamoeba histolytica: a eukaryote with trypanothione metabolism instead of glutathione metabolism, Biotechnol. Appl. Biochem. 30 (1999), 47–52. 51 I. Bruchhaus, S. Richter and E. Tannich, Removal of hydrogen peroxide by the 29 kDa protein of Entamoeba histolytica, Biochem. J. 326 (1997), 785–789. 52 L. B. Poole, H. Z. Chae, B. M. Flores, S. L. Reed, S. G. Rhee and B. E. Torian, Peroxidase activity of a TSA-like antioxidant protein from a pathogenic amoeba, Free Rad. Biol. Med. 23 (1997), 955–959. 53 F. S. Jacobson, R. W. Morgan, M. F. Christman and B. N. Ames, An alkyl hydroperoxide reductase from Salmonella typhimurium involved in the defense of DNA against oxidative damage. Purification and properties, J. Biol. Chem. 264 (1989), 1488–1496. 54 G. Storz, F. S. Jacobson, L. A. Tartaglia, R. W. Morgan, L. A. Silveira and B. N. Ames, An alkyl hydroperoxide reductase induced by oxidative stress in Salmonella typhimurium and Escherichia coli: genetic characterization and cloning of ahp, J. Bacteriol. 171 (1989), 2049–2055. 55 S. Dhandayuthapani, Y. Zhang, M. H. Mudd and V. Deretic, Oxidative stress response and its role in sensitivity to isoniazid in mycobacteria: characterization and inducibility of ahpC by peroxides in Mycobacterium smegmatis and lack of expression in M. aurum and M. tuberculosis, J. Bacteriol. 178 (1996), 3641–3649. 56 D. R. Sherman, K. Mdluli, M. J. Hickey, T. M. Arain, S. L. Morris, C. E. Barry, 3rd and C. K. Stover, Compensatory ahpC gene expression in isoniazid-resistant Mycobacterium tuberculosis, Science 272 (1996), 1641–1643. 57 L. M. Baker, A. Raudonikiene, P. S. Hoffman and L. B. Poole, Essential thioredoxin-dependent peroxiredoxin system from Helicobacter pylori: genetic and kinetic characterization, J. Bacteriol. 183 (2001), 1961–1973. 58 D. R. Sherman, K. Mdluli, M. J. Hickey, C. E. Barry, 3rd and C. K. Stover, AhpCoxidative stress and drug resistance in Mycobacterium tuberculosis, Biofactors 10 (1999), 211–217. 59 R. Bryk, C. D. Lima, H. Erdjument-Bromage, P. Tempst and C. Nathan, Metabolic enzymes of mycobacteria linked to antioxidant defense by a thioredoxin-like protein, Science 295 (2002), 1073–1077. 60 G. L. Newton, K. Arnold, M. S. Price, C. Sherrill, S. B. Delcardayre, Y. Aharonowitz, G. Cohen, J. Davies, R. C. Fahey and C. Davis, Distribution of thiols in microorganisms: mycothiol is a major thiol in most actinomycetes, J. Bacteriol. 178 (1996), 1990–1995. 61 E. M. Jacoby, I. Schlichting, C. B. Lantwin, W. Kabsch and R. L. Krauth-Siegel, Crystal structure of the Trypanosoma cruzi trypanothione reductase mepacrine complex, Proteins 24 (1996), 73–80. 62 C. S. Bond, Y. Zhang, M. Berriman, M. L. Cunningham, A. H. Fairlamb and W. N. Hunter, Crystal structureof Trypanosoma cruzi trypanothione reductase in complex with trypanothione, and the structure-based discovery of new natural product inhibitors, Structure Fold Des. 7 (1999), 81–89. 63 M. S. Alphey, C. S. Bond, E. Tetaud, A. H. Fairlamb and W. N. Hunter, The structure of reduced tryparedoxin peroxidase reveals a decamer and insight into reactivity of 2Cys-peroxiredoxins, J. Mol. Biol. 300 (2000), 903–916. 64 J. R. Harris, E. Schröder, M. N. Isupov, D. Scheffler, P. Kristensen, J. A. Littlechild, A. A. Vagin and U. Meissner, Comparison of the decameric structure of peroxiredoxin-II by transmission electron microscopy and X-ray crystallography, Biochim. Biophys. Acta 1547 (2001), 221–234. 65 B. Hofmann, H. Budde, K. Bruns, S. A. Guerrero, H. M. Kalisz, U. Menge, M. Montemartini, E. Nogoceke, P. Steinert, J. B. Wissing, L. Flohé and H. J. Hecht, Structures of tryparedoxins revealing interaction with trypanothione, Biol. Chem. 382 (2001), 459–471. Citing Literature Volume17, Issue1-42003Pages 83-92 ReferencesRelatedInformation
Referência(s)