EFFECT OF COOLANT PRESSURE, NOZZLE DIAMETER, IMPINGEMENT ANGLE AND SPOT DISTANCE IN HIGH PRESSURE COOLING WITH NEAT OIL IN TURNING Ti-6AL-4V
2008; Taylor & Francis; Volume: 12; Issue: 4 Linguagem: Inglês
10.1080/10910340802518603
ISSN1532-2483
Autores Tópico(s)Tunneling and Rock Mechanics
ResumoThough titanium alloys are being increasingly sought in a wide variety of engineering and biomedical applications, their manufacturability, especially machining and grinding imposes lot of constraints. Titanium alloys are readily machinable provided the cutting velocity is in the range of 30–60 m/min. To achieve higher productivity, if the cutting velocity is enhanced to 60–120 m/min and beyond, rapid tool wear takes place diminishing the available tool life. Tool wear in machining of titanium alloys is mainly due to high cutting zone temperature localised in the vicinity of the cutting edge and enhanced chemical reactivity of titanium with the tool material. Rapid tool wear encountered in machining of titanium alloys is a challenge that needs to be overcome. High pressure cooling in machining is a very promising technology for enhancing tool life and productivity via appropriate cooling and lubrication. The present investigation is an attempt to study the effects of jet application parameters, i.e., coolant pressure, angle of impingement of the jet, spot distance and nozzle diameter on tool wear and chip morphology and to compare the effectiveness while turning Ti-6Al-4V bars under high pressure cooling with neat oil. Results indicated that at a cutting speed of 85 m/min and feed of 0.2 mm/rev, high pressure cooling provided a tool life of 24 min vis-à-vis 12 min under cryogenic cooling.
Referência(s)