Artigo Acesso aberto Revisado por pares

Low-Thrust Minimum-Fuel Optimization in the Circular Restricted Three-Body Problem

2015; American Institute of Aeronautics and Astronautics; Volume: 38; Issue: 8 Linguagem: Inglês

10.2514/1.g001080

ISSN

1533-3884

Autores

Chen Zhang, Francesco Topputo, F. Bernelli Zazzera, Yushan Zhao,

Tópico(s)

Astro and Planetary Science

Resumo

No AccessEngineering NoteLow-Thrust Minimum-Fuel Optimization in the Circular Restricted Three-Body ProblemChen Zhang, Francesco Topputo, Franco Bernelli-Zazzera and Yu-Shan ZhaoChen ZhangSchool of Astronautics, Beihang University, 100191 Beijing, People’s Republic of China*Ph.D. Candidate, School of Astronautics; .Search for more papers by this author, Francesco TopputoDepartment of Aerospace Science and Technolgy, Politecnico di Milano, 20156 Milan, Italy†Assistant Professor, Department of Aerospace Science and Technolgy; .Search for more papers by this author, Franco Bernelli-ZazzeraDepartment of Aerospace Science and Technolgy, Politecnico di Milano, 20156 Milan, Italy‡Professor, Department of Aerospace Science and Technology; .Search for more papers by this author and Yu-Shan ZhaoSchool of Astronautics, Beihang University, 100191 Beijing, People’s Republic of China§Professor, School of Astronautics; .Search for more papers by this authorPublished Online:12 Mar 2015https://doi.org/10.2514/1.G001080SectionsRead Now ToolsAdd to favoritesDownload citationTrack citations ShareShare onFacebookTwitterLinked InRedditEmail About References [1] Mingotti G., Topputo F. and Bernelli-Zazzera F., “Optimal Low-Thrust Invariant Manifold Trajectories via Attainable Sets,” Journal of Guidance, Control, and Dynamics, Vol. 34, No. 6, 2011, pp. 1644–1656. doi:https://doi.org/10.2514/1.52493 JGCDDT 0162-3192 LinkGoogle Scholar[2] Mingotti G. and Gurfil P., “Mixed Low-Thrust Invariant-Manifold Transfers to Distant Prograde Orbits Around Mars,” Journal of Guidance, Control, and Dynamics, Vol. 33, No. 6, 2010, pp. 1753–1764. doi:https://doi.org/10.2514/1.49810 JGCDDT 0162-3192 LinkGoogle Scholar[3] Anderson R. and Lo M., “Role of Invariant Manifolds in Low-Thrust Trajectory Design,” Journal of Guidance, Control, and Dynamics, Vol. 32, No. 6, 2009, pp. 1921–1930. doi:https://doi.org/10.2514/1.37516 JGCDDT 0162-3192 LinkGoogle Scholar[4] Mingotti G., Topputo F. and Bernelli-Zazzera F., “Low-Energy, Low-Thrust Transfers to the Moon,” Celestial Mechanics and Dynamical Astronomy, Vol. 105, Nos. 1–3, 2009, pp. 61–74. doi:https://doi.org/10.1007/s10569-009-9220-7 CrossrefGoogle Scholar[5] Mingotti G., Topputo F. and Bernelli-Zazzera F., “Efficient Invariant-Manifold, Low-Thrust Planar Trajectories to the Moon,” Communications in Nonlinear Science and Numerical Simulation, Vol. 17, No. 2, 2012, pp. 817–831. doi:https://doi.org/10.1016/j.cnsns.2011.06.033 CrossrefGoogle Scholar[6] Pierson B. and Kluever C., “Three-Stage Approach to Optimal Low-Thrust Earth–Moon Trajectories,” Journal of Guidance, Control, and Dynamics, Vol. 17, No. 6, 1994, pp. 1275–1282. doi:https://doi.org/10.2514/3.21344 JGCDDT 0162-3192 LinkGoogle Scholar[7] Kluever C. and Pierson B., “Optimal Low-Thrust Three-Dimensional Earth–Moon Trajectories,” Journal of Guidance, Control, and Dynamics, Vol. 18, No. 4, 1995, pp. 830–837. doi:https://doi.org/10.2514/3.21466 JGCDDT 0162-3192 LinkGoogle Scholar[8] Herman A. and Conway B., “Optimal, Low-Thrust, Earth–Moon Orbit Transfer,” Journal of Guidance, Control, and Dynamics, Vol. 21, No. 1, 1998, pp. 141–147. doi:https://doi.org/10.2514/2.4210 JGCDDT 0162-3192 LinkGoogle Scholar[9] Russell R., “Primer Vector Theory Applied to Global Low-Thrust Trade Studies,” Journal of Guidance, Control, and Dynamics, Vol. 30, No. 2, 2007, pp. 460–472. doi:https://doi.org/10.2514/1.22984 JGCDDT 0162-3192 LinkGoogle Scholar[10] Caillau J., Daoud B. and Gergaud J., “Minimum Fuel Control of the Planar Circular Restricted Three-Body Problem,” Celestial Mechanics and Dynamical Astronomy, Vol. 114, Nos. 1–2, 2012, pp. 137–150. doi:https://doi.org/10.1007/s10569-012-9443-x CrossrefGoogle Scholar[11] Schoenmaekers J., Horas D. and Pulido J., “SMART-1: With Solar Electric Propulsion to the Moon,” Proceeding of the 16th International Symposium on Space Flight Dynamics, NASA Jet Propulsion Lab., Pasadena, CA, 2001, pp. 1–14. Google Scholar[12] Belbruno E., “Lunar Capture Orbits, a Method of Constructing Earth–Moon Trajectories and the Lunar GAS Mission,” Proceedings of the AIAA/DGLR/JSASS International Electric Propulsion Conference, AIAA Paper 1987-1054, 1987, pp. 97–1054. LinkGoogle Scholar[13] Condon G. and Pearson D., “The Role of Humans in Libration Point Missions with Specific Application to an Earth–Moon Libration Point Gateway Station,” Advances in the Astronautical Sciences, Vol. 109, AAS Paper 2001-307, Univelt, San Diego, CA, 2001, pp. 95–110. ADASA9 0065-3438 Google Scholar[14] Farquhar R., Dunham D., Guo Y. and McAdams J., “Utilization of Libration Points for Human Exploration in the Sun–Earth–Moon System and Beyond,” Acta Astronautica, Vol. 55, Nos. 3–9, 2004, pp. 687–700. doi:https://doi.org/10.1016/j.actaastro.2004.05.021 AASTCF 0094-5765 CrossrefGoogle Scholar[15] Post K., Belbruno E. and Topputo F., “Efficient Cis-Lunar Trajectories,” Global Space Exploration Conference, International Astronautical Federation Paper GLEX-2012.02.3.6x12248, Paris, 2012, pp. 1–19. Google Scholar[16] Mingotti G., Topputo F. and Bernelli-Zazzera F., “Combined Optimal Low-Thrust and Stable-Manifold Trajectories to the Earth–Moon Halo Orbits,” AIP Conference Proceedings, Vol. 886, AIP Publ., College Park, MD, 2007, pp. 100–110. doi:https://doi.org/10.1063/1.2710047 Google Scholar[17] Armellin R. and Topputo F., “A Sixth-Order Accurate Scheme for Solving Two-Point Boundary Value Problems in Astrodynamics,” Celestial Mechanics and Dynamical Astronomy, Vol. 96, Nos. 3–4, 2006, pp. 289–309. doi:https://doi.org/10.1007/s10569-006-9047-4 CrossrefGoogle Scholar[18] Martin C. and Conway B., “Optimal Low-Thrust Trajectories Using Stable Manifolds,” Spacecraft Trajectory Optimization, Cambridge Univ. Press, Cambridge, England, U.K., 2010, pp. 238–262. CrossrefGoogle Scholar[19] Pergola P., Finocchietti C. and Andrenucci M., “Design of Low-Thrust Transfers to Libration Point Periodic Orbits Exploiting Manifold Dynamics,” Advances in the Astronautical Sciences, Vol. 145, AAS Paper 2012-330, Univelt, San Diego, CA, 2012, pp. 421–436. ADASA9 0065-3438 Google Scholar[20] Rasotto M., Armellin R., Di Lizia P. and Bernelli-Zazzera F., “Optimal Low-Thrust Transfers in Two-Body and Three-Body Dynamics,” 64th International Astronautical Congress, Curran Assoc., Red Hook, NY, 2013, pp. 5230–5244. Google Scholar[21] Starchville T. and Melton R., “Optimal Low-Thrust Trajectories to Earth–Moon L2 Halo Orbits (Circular Problem),” Proceedings of the AAS/AIAA Astrodynamics Specialists Conference, American Astronomical Soc., Sun Valley, ID, 1997, pp. 97–714. Google Scholar[22] Senent J., Ocampo C. and Capella A., “Low-Thrust Variable-Specific-Impulse Transfers and Guidance to Unstable Periodic Orbits,” Journal of Guidance, Control, and Dynamics, Vol. 28, No. 2, 2005, pp. 280–290. doi:https://doi.org/10.2514/1.6398 JGCDDT 0162-3192 LinkGoogle Scholar[23] Ozimek M. and Howell K., “Low-Thrust Transfers in the Earth–Moon System Including Applications to Libration Point Orbits,” Journal of Guidance, Control, and Dynamics, Vol. 33, No. 2, 2010, pp. 533–549. doi:https://doi.org/10.2514/1.43179 JGCDDT 0162-3192 LinkGoogle Scholar[24] Abraham A., Spencer D. and Hart T., “Preliminary Optimization of Low-Thrust, Geocentric to Halo Orbit, Transfers via Particle Swarm Optimization,” 24th AAS/AIAA Space Flight Mechanics Meeting, Univelt, San Diego, CA, Jan. 2014, pp. 1–17. Google Scholar[25] Caillau J. and Daoud B., “Minimum Time Control of the Restricted Three-Body Problem,” SIAM Journal on Control and Optimization, Vol. 50, No. 6, 2012, pp. 3178–3202. doi:https://doi.org/10.1137/110847299 SJCODC 0363-0129 CrossrefGoogle Scholar[26] Bertrand R. and Epenoy R., “New Smoothing Techniques for Solving Bang–Bang Optimal Control Problems: Numerical Results and Statistical Interpretation,” Optimal Control Applications and Methods, Vol. 23, No. 4, 2002, pp. 171–197. doi:https://doi.org/10.1002/oca.709 OCAMD5 1099-1514 CrossrefGoogle Scholar[27] Haberkorn T., Martinon P. and Gergaud J., “Low Thrust Minimum-Fuel Orbital Transfer: a Homotopic Approach,” Journal of Guidance, Control, and Dynamics, Vol. 27, No. 6, 2004, pp. 1046–1060. doi:https://doi.org/10.2514/1.4022 JGCDDT 0162-3192 LinkGoogle Scholar[28] Jiang F., Baoyin H. and Li J., “Practical Techniques for Low-Thrust Trajectory Optimization with Homotopic Approach,” Journal of Guidance, Control, and Dynamics, Vol. 35, No. 1, 2012, pp. 245–258. doi:https://doi.org/10.2514/1.52476 JGCDDT 0162-3192 LinkGoogle Scholar[29] Martinon P. and Gergaud J., “SHOOT2.0: An Indirect Grid Shooting Package for Optimal Control Problems, with Switching Handling and Embedded Continuation,” Inst. National de Recherche en Informatique et an Automatique, TR-7380, Inria Saclay, France, 2010. Google Scholar[30] Mantia L. and Casalino L., “Indirect Optimization of Low-Thrust Capture Trajectories,” Journal of Guidance, Control, and Dynamics, Vol. 29, No. 4, 2006, pp. 1011–1014. doi:https://doi.org/10.2514/1.18986 JGCDDT 0162-3192 LinkGoogle Scholar[31] Casalino L., Colasurdo G. and Pastrone D., “Optimal Low-Thrust Escape Trajectories Using Gravity Assist,” Journal of Guidance, Control, and Dynamics, Vol. 22, No. 5, 1999, pp. 637–642. doi:https://doi.org/10.2514/2.4451 JGCDDT 0162-3192 LinkGoogle Scholar[32] Szebehely V., Theory of Orbits: The Restricted Problem of Three Bodies, Academic Press, New York, 1967, pp. 7–29. CrossrefGoogle Scholar[33] Prussing J., “Primer Vector Theory and Applications,” Spacecraft Trajectory Optimization, Cambridge Univ. Press, Cambridge, England, U.K., 2010, pp. 16–36. CrossrefGoogle Scholar[34] Thevenet B. and Epenoy R., “Minimum-Fuel Deployment for Spacecraft Formations via Optimal Control,” Journal of Guidance, Control, and Dynamics, Vol. 31, No. 1, 2008, pp. 101–113. doi:https://doi.org/10.2514/1.30364 JGCDDT 0162-3192 LinkGoogle Scholar[35] Bryson A. and Ho Y., Applied Optimal Control, Wiley, New York, 1975, pp. 42–89. Google Scholar[36] Pontryagin L., Mathematical Theory of Optimal Processes, Interscience, New York, 1962, pp. 1–114. Google Scholar[37] Lawden D., Optimal Trajectories for Space Navigation, Butterworths, London, 1963, pp. 1–59. Google Scholar Previous article Next article

Referência(s)