Artigo Revisado por pares

Neural network-based sliding mode adaptive control for robot manipulators

2011; Elsevier BV; Volume: 74; Issue: 14-15 Linguagem: Inglês

10.1016/j.neucom.2011.03.015

ISSN

1872-8286

Autores

Tairen Sun, Hailong Pei, Yongping Pan, Hongbo Zhou, Caihong Zhang,

Tópico(s)

Adaptive Dynamic Programming Control

Resumo

This paper addresses the robust trajectory tracking problem for a robot manipulator in the presence of uncertainties and disturbances. First, a neural network-based sliding mode adaptive control (NNSMAC), which is a combination of sliding mode technique, neural network (NN) approximation and adaptive technique, is designed to ensure trajectory tracking by the robot manipulator. It is shown using the Lyapunov theory that the tracking error asymptotically converge to zero. However, the assumption on the availability of the robot manipulator dynamics is not always practical. So, an NN-based adaptive observer is designed to estimate the velocities of the links. Next, based on the observer, a neural network-based sliding mode adaptive output feedback control (NNSMAOFC) is designed. Then it is shown by the Lyapunov theory that the trajectory tracking errors, the observer estimation errors asymptotically converge to zero. The effectiveness of the designed NNSMAC, the NN-based adaptive observer and the NNSMAOFC is illustrated by simulations.

Referência(s)
Altmetric
PlumX