Artigo Produção Nacional Revisado por pares

Evidence of genetic variations associated with rotator cuff disease

2013; Elsevier BV; Volume: 23; Issue: 2 Linguagem: Inglês

10.1016/j.jse.2013.07.053

ISSN

1532-6500

Autores

Geraldo da Rocha Motta Filho, Marcus Vinícius Galvão Amaral, Eduardo Rezende, Rafael Pitta, Thays Cristine dos Santos Vieira, Maria Eugênia Leite Duarte, Alexandre R. Vieira, Priscila Ladeira Casado,

Tópico(s)

Laser Applications in Dentistry and Medicine

Resumo

Background Rotator cuff disease (RCD) is a complex process influenced by a multitude of factors, and a number of gene pathways are altered in rotator cuff tears. Polymorphisms in these genes can lead to an extended tendon degeneration process, which explains why subsets of patients are more susceptible to RCD. Materials and methods Twenty-three single-nucleotide polymorphisms within 6 genes involved in repair and degenerative processes (DEFB1, DENND2C, ESRRB, FGF3, FGF10, and FGFR1) were investigated in 410 patients, 203 with a diagnosis of RCD and 207 presenting with absence of RCD. Exclusion criteria were patients older than 60 years and younger than 45 years with a history of trauma, rheumatoid arthritis, autoimmune syndrome, pregnancy, and use of corticosteroids. Genomic DNA was obtained from saliva samples. Genetic markers were genotyped with TaqMan real-time polymerase chain reaction. The χ2 test compared genotypes and haplotype differences between groups. Multivariate logistic regression analyzed the significance of many covariates and the incidence of RCD. Results Statistical analysis revealed female sex (P = .001; odds ratio, 2.07 [1.30-3.30]) and being white (P = .002; odds ratio, 1.88 [1.21-2.90]) to be risk factors for RCD development. A significant association of haplotypes CCTTCCAG in ESRRB (P = .05), CGACG in FGF3 (P = .01), CC in DEFB1 (P = .03), and FGFR1 rs13317 (P = .02) with RCD could be observed. Also, association between FGF10 rs11750845 (P = .03) and rs1011814 (P = .01) was observed after adjustment by ethnic group and sex. Conclusions Our work clearly supports the role of DEFB1, ESRRB, FGF3, FGF10, and FGFR1 genes in RCD. Identification of these variants can clarify causal pathways and provide a clue for therapeutic targets. Rotator cuff disease (RCD) is a complex process influenced by a multitude of factors, and a number of gene pathways are altered in rotator cuff tears. Polymorphisms in these genes can lead to an extended tendon degeneration process, which explains why subsets of patients are more susceptible to RCD. Twenty-three single-nucleotide polymorphisms within 6 genes involved in repair and degenerative processes (DEFB1, DENND2C, ESRRB, FGF3, FGF10, and FGFR1) were investigated in 410 patients, 203 with a diagnosis of RCD and 207 presenting with absence of RCD. Exclusion criteria were patients older than 60 years and younger than 45 years with a history of trauma, rheumatoid arthritis, autoimmune syndrome, pregnancy, and use of corticosteroids. Genomic DNA was obtained from saliva samples. Genetic markers were genotyped with TaqMan real-time polymerase chain reaction. The χ2 test compared genotypes and haplotype differences between groups. Multivariate logistic regression analyzed the significance of many covariates and the incidence of RCD. Statistical analysis revealed female sex (P = .001; odds ratio, 2.07 [1.30-3.30]) and being white (P = .002; odds ratio, 1.88 [1.21-2.90]) to be risk factors for RCD development. A significant association of haplotypes CCTTCCAG in ESRRB (P = .05), CGACG in FGF3 (P = .01), CC in DEFB1 (P = .03), and FGFR1 rs13317 (P = .02) with RCD could be observed. Also, association between FGF10 rs11750845 (P = .03) and rs1011814 (P = .01) was observed after adjustment by ethnic group and sex. Our work clearly supports the role of DEFB1, ESRRB, FGF3, FGF10, and FGFR1 genes in RCD. Identification of these variants can clarify causal pathways and provide a clue for therapeutic targets.

Referência(s)