Artigo Revisado por pares

iNOS‐derived nitric oxide mediates the increase in TFF2 expression associated with gastric damage: role of HIF‐1

2009; Wiley; Volume: 24; Issue: 1 Linguagem: Inglês

10.1096/fj.09-137489

ISSN

1530-6860

Autores

D Ortiz‐Masiá, Carlos Hernández, Elsa Quintana, Miriam Veiázquez, Sonia Cebrián, Annia Riaño, Sara Calatayud, Juan V. Esplugues, M D Barrachina,

Tópico(s)

Respiratory Support and Mechanisms

Resumo

The FASEB JournalVolume 24, Issue 1 p. 136-145 Research CommunicationFree to Read iNOS-derived nitric oxide mediates the increase in TFF2 expression associated with gastric damage: role of HIF-1 Dolores Ortiz-Masiá, Dolores Ortiz-Masiá Departamento de Farmacología, CIBERehd, Facultad de Medicina, Universidad de Valencia, Valencia, Spain CIBERehd, Facultad de Medicina, Universidad de Valencia, Valencia, SpainSearch for more papers by this authorCarlos Hernández, Carlos Hernández CIBERehd, Facultad de Medicina, Universidad de Valencia, Valencia, SpainSearch for more papers by this authorElsa Quintana, Elsa Quintana CIBERehd, Facultad de Medicina, Universidad de Valencia, Valencia, SpainSearch for more papers by this authorMiriam Veiázquez, Miriam Veiázquez Departamento de Farmacología, CIBERehd, Facultad de Medicina, Universidad de Valencia, Valencia, Spain CIBERehd, Facultad de Medicina, Universidad de Valencia, Valencia, SpainSearch for more papers by this authorSonia Cebrián, Sonia Cebrián CIBERehd, Facultad de Medicina, Universidad de Valencia, Valencia, SpainSearch for more papers by this authorAnnia Riaño, Annia Riaño CIBERehd, Facultad de Medicina, Universidad de Valencia, Valencia, SpainSearch for more papers by this authorSara Calatayud, Sara Calatayud Departamento de Farmacología, CIBERehd, Facultad de Medicina, Universidad de Valencia, Valencia, Spain CIBERehd, Facultad de Medicina, Universidad de Valencia, Valencia, SpainSearch for more papers by this authorJuan V. Esplugues, Juan V. Esplugues Departamento de Farmacología, CIBERehd, Facultad de Medicina, Universidad de Valencia, Valencia, Spain CIBERehd, Facultad de Medicina, Universidad de Valencia, Valencia, SpainSearch for more papers by this authorMaria D. Barrachina, Corresponding Author Maria D. Barrachina [email protected] Departamento de Farmacología, CIBERehd, Facultad de Medicina, Universidad de Valencia, Valencia, Spain CIBERehd, Facultad de Medicina, Universidad de Valencia, Valencia, SpainCorrespondence: Department of Pharmacology, Faculty of Medicine, University of Valencia, Avda. Blasco Ibáñez, 15–17, 46010 Valencia Spain. E-mail: [email protected]Search for more papers by this author Dolores Ortiz-Masiá, Dolores Ortiz-Masiá Departamento de Farmacología, CIBERehd, Facultad de Medicina, Universidad de Valencia, Valencia, Spain CIBERehd, Facultad de Medicina, Universidad de Valencia, Valencia, SpainSearch for more papers by this authorCarlos Hernández, Carlos Hernández CIBERehd, Facultad de Medicina, Universidad de Valencia, Valencia, SpainSearch for more papers by this authorElsa Quintana, Elsa Quintana CIBERehd, Facultad de Medicina, Universidad de Valencia, Valencia, SpainSearch for more papers by this authorMiriam Veiázquez, Miriam Veiázquez Departamento de Farmacología, CIBERehd, Facultad de Medicina, Universidad de Valencia, Valencia, Spain CIBERehd, Facultad de Medicina, Universidad de Valencia, Valencia, SpainSearch for more papers by this authorSonia Cebrián, Sonia Cebrián CIBERehd, Facultad de Medicina, Universidad de Valencia, Valencia, SpainSearch for more papers by this authorAnnia Riaño, Annia Riaño CIBERehd, Facultad de Medicina, Universidad de Valencia, Valencia, SpainSearch for more papers by this authorSara Calatayud, Sara Calatayud Departamento de Farmacología, CIBERehd, Facultad de Medicina, Universidad de Valencia, Valencia, Spain CIBERehd, Facultad de Medicina, Universidad de Valencia, Valencia, SpainSearch for more papers by this authorJuan V. Esplugues, Juan V. Esplugues Departamento de Farmacología, CIBERehd, Facultad de Medicina, Universidad de Valencia, Valencia, Spain CIBERehd, Facultad de Medicina, Universidad de Valencia, Valencia, SpainSearch for more papers by this authorMaria D. Barrachina, Corresponding Author Maria D. Barrachina [email protected] Departamento de Farmacología, CIBERehd, Facultad de Medicina, Universidad de Valencia, Valencia, Spain CIBERehd, Facultad de Medicina, Universidad de Valencia, Valencia, SpainCorrespondence: Department of Pharmacology, Faculty of Medicine, University of Valencia, Avda. Blasco Ibáñez, 15–17, 46010 Valencia Spain. E-mail: [email protected]Search for more papers by this author First published: 09 September 2009 https://doi.org/10.1096/fj.09-137489Citations: 21 These authors contributed equally to this work. Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat ABSTRACT Trefoil (TFF) peptides are involved in gastrointestinal mucosal restitution. An hypoxia inducible factor 1 (HIF-l)-dependent induction of TFF genes has been reported in gastric epithelial cells. Nitric oxide (NO) is associated with mucosal damage and modulates HIF-1 activity. The aim of the present study was to analyze the role of iNOS-derived NO in HIF-1 α stabilization and TFF gene expression in damaged gastric mucosa. Aspirin caused gastric injury that peaked 6 h after dosing and returned to normality at 24 h. iNOS mRNA expression occurs in the corpus in parallel with damage. Blockade of iNOS activity did not modify gastric lesions induced by aspirin but delayed mucosal healing. Aspirin induced HIF-1α stabilization and TFF2 mRNA up-regulation in the mucosa, but these effects were diminished when iNOS activity was inhibited. Results obtained using a coculture setup showed that iNOS-derived NO from activated mac-rophages induced HIF-1 α stabilization, TFF gene expression' and accelerated wound healing in cultured epithelial cells. Finally, transient silencing of endogenous HIF-1α in epithelial cells significantly undermined activated mac-rophage-induced TFF gene expression. Evidence suggests that the iNOS-derived NO associated with NSAID-induced gastric injury is implicated in mucosal restitution via the HIF-1-mediated induction of TFF genes.—Ortiz-Masiá, D., Hernandez, C., Quintana, E., Velazquez, M., Cebrián, S., Riano, A., Calatayud, S., Esplugues, J. V., Barrachina, M. D. iNOS-derived nitric oxide mediates the increase in TFF2 expression associated with gastric damage: role of HIF-1. FASEB J. 24, 136–145 (2010). www.fasebj.org REFERENCES 1Sands, B. E., and Podolsky, D. K. (1996) The trefoil peptide family. Annu. Rev. Physiol. 58, 253–273 2Taupin, D., and Podolsky, D. K. (2003) Trefoil factors: initiators of mucosal healing. Nat. Rev. Mol. Cell. Biol. 4, 721–732 3Dignass, A., Lynch-Devaney, K., Kindon, H., Thim, L., and Podolsky, D. K. (1994) Trefoil peptides promote epithelial migration through a transforming growth factor beta-independent pathway. J. Clin. Invest. 94, 376–383 4Playford, R.J., Marchbank, T., Chinery, R., Evison, R., Pignatelli, M., Boulton, R. A., Thim, L., and Hanby, A. M. (1995) Human spasmolytic polypeptide is a cytoprotective agent that stimulates cell migration. Gastroenterology 108, 108–116 5Kato, K., Chen, M. C., Nguyen, M., Lehmann, F. S., Podolsky, D. K., and Soll, A. H. (1999) Effects of growth factors and trefoil peptides on migration and replication in primary oxyntic cultures. Am. J. Physiol. 276, G1105–G1116 6Hoffmann, W. (2005) Trefoil factors TFF (trefoil factor family) peptide-triggered signals promoting mucosal restitution. Cell. Mol. Life Sci. 62, 2932–2938 7Kubes, P., Suzuki, M., and Granger, D. N. (1991) Nitric oxide: an endogenous modulator of leukocyte adhesion. Proc. Natl. Acad. Sci. U.S. A. 88, 4651–4655 8Longman, R. J., Douthwaite, J., Sylvester, P. A., Poulsom, R., Corfield, A. P., Thomas, M. G., and Wright, N. A. (2000) Coordinated localisation of mucins and trefoil peptides in the ulcer associated cell lineage and the gastrointestinal mucosa. Gut 47, 792–800 9Hernandez, C., Santamatilde, E., McCreath, K. J., Cervera, A. M., Diez, I., Ortiz-Masia, D., Martinez, N., Calatayud, S., Esplugues, J. V., and Barrachina, M. D. (2009) Induction of trefoil factor (TFF)1, TFF2 and TFF3 by hypoxia is mediated by hypoxia inducible factor-1: implications for gastric mucosal healing. Br. J. Pharmacol. 156, 262–272 10Bruick, R. K. (2003) Oxygen sensing in the hypoxic response pathway: regulation of the hypoxia-inducible transcription factor. Genes Dev. 17, 2614–2623 11Lando, D., Gorman, J.J., Whitelaw, M. L., and Peet, D.J. (2003) Oxygen-dependent regulation of hypoxia-inducible factors by prolyl and asparaginyl hydroxylation. Eur. J. Biochem. 270, 781–790 12Sandau, K. B., Fandrey, J., and Brune, B. (2001) Accumulation of HIF-1alpha under the influence of nitric oxide. Blood 97, 1009–1015 13Sogawa, K., Numayama-Tsuruta, K., Ema, M., Abe, M., Abe, H., and Fujii-Kuriyama, Y. (1998) Inhibition of hypoxia-inducible factor 1 activity by nitric oxide donors in hypoxia. Proc. Natl. Acad. Sci. U. S. A. 95, 7368–7373 14Yin, J. H., Yang, D. I., Ku, G., and Hsu, C. Y. (2000) iNOS expression inhibits hypoxia-inducible factor-1 activity. Biochem. Biophys. Res. Commun. 279, 30–34 15Agani, F. H., Puchowicz, M., Chavez, J. C., Pichiule, P., and LaManna, J. (2002) Role of nitric oxide in the regulation of HIF-1alpha expression during hypoxia. Am. J. Physiol. Cell Physiol. 283, C178–C186 16Bove, P. F., Hristova, M., Wesley, U. V., Olson, N., Lounsbury, K. M., and van der Vliet, A. (2008) Inflammatory levels of nitric oxide inhibit airwayepithelial cell migration by inhibition of the kinase ERK1/2 and activation of hypoxia-inducible factor-1 alpha. J.Biol. Chem. 283, 17919–17928 17Mateo, J., Garcia-Lecea, M., Cadenas, S., Hernandez, C., and Moncada, S. (2003) Regulation of hypoxia-inducible factor-1alpha by nitric oxide through mitochondria-dependent and -independent pathways. Biochem. J. 376, 537–544 18Metzen, E., Zhou, J., Jelkmann, W., Fandrey, J., and Brune, B. (2003) Nitric oxide impairs normoxic degradation of HIF-1alpha by inhibition of prolyl hydroxylases. Mol. Biol. Cell 14, 3470–3481 19Li, F., Sonveaux, P., Rabbani, Z. N., Liu, S., Yan, B., Huang, Q., Vujaskovic, Z., Dewhirst, M. W., and Li, C. Y. (2007) Regulation of HIF-1alpha stability through S-nitrosylation. Mol. Cell. 26, 63–74 20Brune, B., and Zhou, J. (2007) Nitric oxide and superoxide: interference with hypoxic signaling. Cardiovasc. Res. 75, 275–282 21Mylonis, I., Chachami, G., Samiotaki, M., Panayotou, G., Paraskeva, E., Kalousi, A., Georgatsou, E., Bonanou, S., and Simos, G. (2006) Identification of MAPK phosphorylation sites and their role in the localization and activity of hypoxia-inducible factor-1alpha. J. Biol. Chem. 281′ 33095–33106 22Ito, M., Tanaka, S., Kim, S., Kuwai, T., Matsutani, N., Kamada, T., Kitadai, Y., Sumii, M., Yoshihara, M., Haruma, K., and Chayama, K. (2003) The specific expression of hypoxia induc-ible factor-1alpha in human gastric mucosa induced by nonste-roidal anti-inflammatory drugs. Aliment Pharmacol. Ther. 18(Suppl. 1), 90–98 23Kauffman, Jr. G. L., (1981) The role of prostaglandins in the regulation of gastric mucosal blood flow. Prostaglandins 21(Suppl.), 33–38 24Wallace, J. L. (1993) Gastric ulceration: critical events at the neutrophil-endothelium interface. Can. J. Physiol. Pharmacol. 71, 98–102 25Jimenez, D., Martin, M. J., Pozo, D., Alarcon, C., Esteban, J., Bruseghini, L., Esteras, A., and Motilva, V. (2002) Mechanisms involved in protection afforded by L-arginine in ibuprofen-induced gastric damage: role ofnitric oxide and prostaglandins. Dig. Dis. Sci. 47, 44–53 26Harvey, J. M., Clark, G. M., Osborne, C. K., and Allred, D. C. (1999) Estrogen receptor status by immunohistochemistry is superior to the ligand-binding assay for predicting response to adjuvant endocrine therapy in breast cancer. J. Clin. Oncol. 17, 1474–1481 27Walker, R. A. (2006) Quantification of immunohistochemistry: issues concerning methods, utility and semiquantitative assessment I. Histopathology 49 406–410 28Quintana, E., Hernandez, C., Alvarez-Barrientos, A., Esplugues, J. V., and Barrachina, M. D. (2004) Synthesis of nitric oxide in postganglionic myenteric neurons during endotoxemia: implications for gastric motor function in rats. FASEB J. 18′ 531–533 29Ma, L., and Wallace, J. L. (2000) Endothelial nitric oxide synthase modulates gastric ulcer healing in rats. Am. J. Physiol. Gastrointest. Liver Physiol. 279′ G341-G346 30Yasuhiro, T., Konaka, A., Ukawa, H., Kato, S., and Takeuchi, K. (1997) Role of nitric oxide in pathogenesis of gastric mucosal damage induced by compound 48/80 in rats. J. Physiol. Paris 91, 131–138 31Takeuchi, K., Suzuki, K., Araki, H., Mizoguchi, H., Sugamoto, S., and Umdeda, M. (1999) Roles of endogenous prostaglandins and nitric oxide in gastroduodenal ulcerogenic responses induced in rats by hypothermic stress. J. Physiol. Paris 93′ 423–431 32Nishida, K., Ohta, Y., and Ishiguro, I. (1998) Relation of inducible nitric oxide synthase activity to lipid peroxidation and nonprotein sulfhydryl oxidation in the development of stress-induced gastric mucosal lesions in rats. Nitric Oxide 2, 215–223 33Souza, M. H., Lemos, H. P., Oliveira, R. B., and Cunha, F. Q. (2004) Gastric damage and granulocyte infiltration induced by indomethacin in tumour necrosis factor receptor 1 (TNF-R1) or inducible nitric oxide synthase (iNOS) deficient mice. Gut 53 791–796 34Garvey, E. P., Oplinger, J. A., Furfine, E. S., Kiff, R. J., Laszlo, F., Whittle, B. J., and Knowles, R. G. (1997) 1400W is a slow, tight binding, and highly selective inhibitor of inducible nitric-oxide synthase in vitro and in vivo. J. Biol. Chem. 272, 4959–4963 35Boer, R., Ulrich, W. R., Klein, T., Mirau, B., Haas, S., and Baur, I. (2000) The inhibitory potency and selectivity of arginine substrate site nitric-oxide synthase inhibitors is solely determined by their affinity toward the different isoenzymes. Mol. Pharmacol. 58, 1026–1034 36Hayashi, Y., Abe, M., Murai, A., Shimizu, N., Okamoto, I., Katsuragi, T., and Tanaka, K. (2005) Comparison of effects of nitric oxide synthase (NOS) inhibitors on plasma nitrite/nitrate levels and tissue NOS activity in septic organs. Microbiol. Immunol. 49, 139–147 37Calatayud, S., Barrachina, D., and Esplugues, J. V. (2001) Nitric oxide: relation to integrity, injury, and healing of the gastric mucosa. Microsc. Res. Tech. 53, 325–335 38Dudar, G. K., d'Andrea, L. D., Di Stasi, R., Pedone, C., and Wallace, J. L. (2008) A vascular endothelial growth factor mimetic accelerates gastric ulcer healing in an iNOS-dependent manner. Am. J. Physiol. Gastrointest. Liver Physiol. 295, G374–G381 39Tatemichi, M., Ogura, T., Sakurazawa, N., Nagata, H., Sugita, M., and Esumi, H. (2003) Roles of inducible nitric oxide synthase in the development and healing of experimentally induced gastric ulcers. Int. J. Exp. Pathol. 84, 213–220 40Akiba, Y., Nakamura, M., Mori, M., Suzuki, H., Oda, M., Kimura, H., Miura, S., Tsuchiya, M., and Ishii, H. (1998) Inhibition of inducible nitric oxide synthase delays gastric ulcer healing in the rat. J. Clin. Gastroenterol. 27(Suppl. 1), S64–S73 41Beck, K. F., Eberhardt, W., Frank, S., Huwiler, A., Messmer, U. K., Muhl, H., and Pfeilschifter, J. (1999) Inducible NO synthase: role in cellular signalling. J. Exp. Biol. 202 645–653 42Azarschab, P., Al Azzeh, E., Kornberger, W., and Gott, P. (2001) Aspirin promotes TFF2 gene activation in human gastric cancer cell lines. FEBS Lett. 488, 206–210 43Louis, N. A., Hamilton, K. E., Canny, G., Shekels, L. L., Ho, S. B., and Colgan, S. P. (2006) Selective induction of mucin-3 by hypoxia in intestinal epithelia. J. Cell. Biochem. 99, 1616–1627 44Kimura, H., Weisz, A., Kurashima, Y., Hashimoto, K., Ogura, T., d'Acquisto, F., Addeo, R., Makuuchi, M., and Esumi, H. (2000) Hypoxia response element of the human vascular endothelial growth factor gene mediates transcriptional regulation by nitric oxide: control of hypoxia-inducible factor-1 activity by nitric oxide. Blood 95, 189–197 45Hagen, T., Taylor, C. T., Lam, F., and Moncada, S. (2003) Redistribution of intracellular oxygen in hypoxia by nitric oxide: effect on HIF1alpha. Science 302, 1975–1978 46Anand, R. J., Dai, S., Rippel, C., Leaphart, C., Qureshi, F., Gribar, S. C., Kohler, J. W., Li, J., Stolz, D. B., Sodhi, C., and Hackam, D. J. (2008) Activated macrophages inhibit enterocyte gap junctions via the release of nitric oxide. Am. J. Physiol. Gastrointest. Liver Physiol. 294, G109–G119 47Rhoads, J. M., Liu, Y., Niu, X., Surendran, S., and Wu, G. (2008) Arginine stimulates cdx2-transformed intestinal epithelial cell migration via a mechanism requiring both nitric oxide and phosphorylation of p70 S6 kinase. J. Nutr. 138, 1652–1657 Citing Literature Volume24, Issue1January 2010Pages 136-145 ReferencesRelatedInformation

Referência(s)
Altmetric
PlumX