Artigo Produção Nacional Revisado por pares

Theoretical Study of Specific Solvent Effects on the Optical and Magnetic Properties of Copper(II) Acetylacetonate

2011; American Chemical Society; Volume: 115; Issue: 8 Linguagem: Inglês

10.1021/jp109826p

ISSN

1520-5215

Autores

Katia Júlia de Almeida, Teodorico C. Ramalho, Žilvinas Rinkevičius, Olav Vahtras, Hans Ågren, Amary César,

Tópico(s)

Magnetism in coordination complexes

Resumo

Specific and basicity solvent effects on the visible near-infrared electronic transitions and the electron paramagnetic resonance (EPR) parameters of the copper(II) acetylacetonate complex, Cu(acac)2, have been investigated at the density functional theory level. The computed absorption transitions as well as the EPR parameters show a strong dependence on the direct coordination environment around the Cu(II) complex. High solvatocromic shifts are observed for 3d-3d transitions, with the highest effect observed for the dz(2)→dxy transition, which is red-shifted by 6000 cm(-1) and 9000 cm(-1) in water and pyridine solvent models, respectively. Compared to the electronic g-tensors, the hyperfine coupling constants of the Cu(acac)2 complex show a more pronounced dependence on the effect of base strength of solvent. Overall, the present methodology satisfactorily models the solvent effect on the optical and magnetic properties of the Cu(acac)2 complex, and theory and experiment agree sufficiently well to warrant the use of the computed optical and EPR parameters to elucidate the coordination environment of the Cu(II) systems in basic solutions.

Referência(s)