Artigo Revisado por pares

Ultrastructural analysis of primary endings in deaf white cats: Morphologic alterations in endbulbs of held

1997; Wiley; Volume: 385; Issue: 2 Linguagem: Inglês

10.1002/(sici)1096-9861(19970825)385

ISSN

1096-9861

Autores

David K. Ryugo, Tan Pongstaporn, David M. Huchton, John K. Niparko,

Tópico(s)

Neural dynamics and brain function

Resumo

Journal of Comparative NeurologyVolume 385, Issue 2 p. 230-244 Ultrastructural analysis of primary endings in deaf white cats: Morphologic alterations in endbulbs of held D.K. Ryugo, Corresponding Author D.K. Ryugo [email protected] Department of Otolaryngology-Head and Neck Surgery, Center for Hearing Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 Department of Neuroscience, Center for Hearing Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205Center for Hearing Sciences, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, MD 21205Search for more papers by this authorT. Pongstaporn, T. Pongstaporn Department of Otolaryngology-Head and Neck Surgery, Center for Hearing Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205Search for more papers by this authorD.M. Huchton, D.M. Huchton Department of Otolaryngology-Head and Neck Surgery, Center for Hearing Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205Search for more papers by this authorJ.K. Niparko, J.K. Niparko Department of Otolaryngology-Head and Neck Surgery, Center for Hearing Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205Search for more papers by this author D.K. Ryugo, Corresponding Author D.K. Ryugo [email protected] Department of Otolaryngology-Head and Neck Surgery, Center for Hearing Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 Department of Neuroscience, Center for Hearing Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205Center for Hearing Sciences, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, MD 21205Search for more papers by this authorT. Pongstaporn, T. Pongstaporn Department of Otolaryngology-Head and Neck Surgery, Center for Hearing Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205Search for more papers by this authorD.M. Huchton, D.M. Huchton Department of Otolaryngology-Head and Neck Surgery, Center for Hearing Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205Search for more papers by this authorJ.K. Niparko, J.K. Niparko Department of Otolaryngology-Head and Neck Surgery, Center for Hearing Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205Search for more papers by this author First published: 06 December 1998 https://doi.org/10.1002/(SICI)1096-9861(19970825)385:2 3.0.CO;2-2Citations: 108AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Abstract Changes in structure and function of the auditory system can be produced by experimentally manipulating the sensory environment, and especially dramatic effects result from deprivation procedures. An alternative deprivation strategy utilizes naturally occurring lesions. The congenitally deaf white cat represents an animal model of sensory deprivation because it mimics a form of human deafness called the Scheibe deformity and permits studies of how central neurons react to early-onset cochlear degeneration. We studied the synaptic characteristics of the endbulb of Held, a prominent auditory nerve terminal in the cochlear nucleus. Endbulbs arise from the ascending branch of the auditory nerve fiber and contact the cell body of spherical bushy cells. After 6 months, endbulbs of deaf white cats exhibit alterations in structure that are clearly distinguishable from those of normal hearing cats, including a diminution in terminal branching, a reduction in synaptic vesicle density, structural abnormalities in mitochondria, thickening of the pre- and postsynaptic densities, and enlargement of synapse size. The hypertrophied membrane densities are suggestive of a compensatory response to diminished transmitter release. These data reveal that early-onset, long-term deafness produces unambiguous alterations in synaptic structure and may be relevant to rehabilitation strategies that promote aural/oral communication. J. Comp. Neurol. 385:230–244, 1997. © 1997 Wiley-Liss, Inc. Literature Cited Aboujaoude, E. S., J. K. Niparko, and D. K. Ryugo (1996) Fractal analysis of endbulbs of Held in cats. ARO Abstr. 19: 171. Bailey, C. H., and M. Chen (1983) Morphological basis of long-term habituation and sensitization in Aplysia. Science 220: 91– 93. Bakin, J. S., and N. M. Weinberger (1990) Classical conditioning induces CS-specific receptive field plasticity in the auditory cortex of the guinea pig. Brain Res. 536: 271– 286. Benes, F. M., T. N. Parks, and E. W. Rubel (1977) Rapid dendritic atrophy following deafferentation: An EM morphometric analysis. Brain Res. 122: 1– 13. Benson, T. W., D. K. Ryugo, and J. W. Hinds (1984) Effects of sensory deprivation on the developing mouse olfactory system: A light and electron microscopic, morphometric analysis. J. Neurosci. 4: 638– 653. Bergsma, D., and K. Brown (1971) White fur, blue eyes, and deafness in the domestic cat. J. Hered. 62: 171– 185. Born, D. E., and E. W. Rubel (1985) Afferent influences on brain stem auditory nuclel of the chicken: Neuron number and size following cohela removal. J. Comp. Neurol. 231: 435– 445. Born, D. E., D. Durham, and E. W. Rubel (1991) Afferent influences on brainstem auditory nuclei of the chick: Nucleus magnocellularis neuronal activity following cochlea removal. Brain Res. 557: 37– 47. Bosher, S. K., and C. S. Hallpike (1965) Observations on the histological features, development and pathogenesis of the inner ear degeneration of the deaf white cat. Proc. R. Soc. Lond. B 162: 147– 170. Brighton, P., R. Ramesar, I. Winship, D. Viljoen, J. Greenberg, K. Young, D. Curtis, and S. Sellars (1991) Hearing impairment and pigmentary disturbance. Ann. NY Acad. Sci. 630: 152– 166. Cant, N. B., and D. K. Morest (1979) Organization of the neurons in the anterior division of the anteroventral cochlear nucleus of the cat. Light-microscopic observations. Neuroscience 4: 1909– 1923. Desmond, N. L., and W. B. Levy (1986) Changes in the postsynaptic density with long-term potentiation in the dentate gyrus. J. Comp. Neurol. 253: 476– 482. Deitch, J. S., and E. W. Rubel (1984) Afferent influences on brain stem auditory nuclei of the chicken: Time course and specificity of dendritic atrophy following deafferentation. J. Comp. Neurol. 229: 66– 79. Deitch, J. S., and E. W. Rubel (1989a) Changes in neuronal cell bodies in N laminaris during deafferentation-induced dendritic atrophy. J. Comp. Neurol. 281: 259– 268. Deitch, J. S., and E. W. Rubel (1989b) Rapid changes in ultrastructure during deafferentation-induced dendritic atrophy. J. Comp. Neurol. 281: 234– 258. Deol, M. S. (1970) The relationship between abnormalities of pigmentation and of the inner ear. Proc. R. Soc. Lond. 175: 201– 217. Durham, D., and T. A. Woolsey (1984) Effects of neonatal whisker lesions on mouse central trigeminal pathways. J. Comp. Neurol. 223: 424– 447. Fekete, D. M., E. M. Rouiller, M. C. Liberman, and D. K. Ryugo (1984) The central projections of intracellularly labeled auditory nerve fibers in cats. J. Comp. Neurol. 229: 432– 450. Fernadez, E., W. D. Eldred, J. Ammermüller, A. Block, W. Von Bloh, and H. Kolb (1994) Complexity and scaling properties of amacrine, ganglion, horizontal, and bipolar cells in the turtle retina. J. Comp. Neurol. 347: 397– 408. Flucher, B. E., and M. P. Daniels (1989) Distribution of Na+ channels and ankyrin in neuromuscular junctions is complementary to that of acetylcholine receptors and the 43 KD protein. Neuron 3: 163– 175. Gantz, B., R. Tyler, G. Woodworth, N. Tye-Murray, and H. Fryauf-Bertschy (1994) Results of multichannel cochlear implants in congenital and acquired prelingual deafness in children: Five year follow up. Am. J. Otol. 5: 1– 8. Gray, E. G., and R. W. Guillery (1966) Synaptic morphology in the normal and degenerating nervous system. Int. Rev. Cytol. 19: 111– 182. Greenough, W. T., R. W. West, and T. J. DeVoodg (1978) Subsynaptic plate perforations: Changes with age and experience in the rat. Science 202: 1096– 1098. Gulley, R. L., D. M. D. Landis, and T. S. Reese (1978) Internal organization of membranes at endbulbs of Held in the anteroventral cochlear nucleus. J. Comp. Neurol. 180: 707– 742. Hashisaki, G. T., and E. W. Rubel (1989) Effects of unilateral cochlea removal on anteroventral cochlear nucleus neurons in developing gerbils. J. Comp. Neurol. 283: 5– 73. Held, H. (1893) Die centrale genhörleitung. Arch. Physiol. Anat. 201– 248. Hillman, D. E., and S. Chen (1985) Plasticity in the size of presynaptic and postsynaptic membrane specializations. In C. W. Cotman (ed): Synaptic Plasticity. New York: Guilford Press, pp. 39– 75. Ibata, Y., and G. D. Pappas (1976) The fine structure of synapses in relation to the large spherical neurons in the anterior ventral cochlear (sic) of the cat. J. Neurocytol. 5: 395– 406. Larsen, S. A., and T. M. Kirchoff (1992) Anatomical evidence of plasticity in the cochlear nuclei of deaf white cats. Exp. Neurol. 115: 151– 157. Lenn, N. J., and T. S. Reese (1966) The fine structure of nerve endings in the nucleus of the trapezoid body and the ventral cochlear nucleus. Am. J. Anat. 118: 375– 390. Lesperance, M. M., R. H. Helfert, and R. A. Altschuler (1995) Deafness induced cell size changes in rostral AVCN of the guinea pig. Hear. Res. 86: 77– 81. Lorente de No, R. (1981) The Primary Acoustic Nuclei. New York: Raven Press. Lustig, L. R., P. A. Leake, R. L. Snyder, and S. J. Rebscher (1994) Changes in the cat cochlear nucleus following neonatal deafening and chronic intracochlear electrical stimulation. Hear. Res. 74: 29– 37. Mair, I. W. (1973) Hereditary deafness in the white cat. Acta. Otolaryngol. 314: 1– 48. Mandelbrot, B. B. (1982) The Fractal Geometry of Nature. New York: Freeman. Melcher, J. R., J. J. Guinan, Jr., I. M. Knudson, and N. Y. S. Kiang (1996) Generators of the brainstem auditory evoked potential in cat. II. Correlating lesion sites with waveform changes. Hear. Res. 93: 28– 51. Molnar, C. E., and R. R. Pfeiffer (1968) Interpretation of spontaneous spike discharge patterns of neurons in the cochlear nucleus. Proceed. IEEE 56: 993– 1004. Moore, D. R. (1990) Auditory brainstem of the ferret: Early cessation of developmental sensitivity of neurons in the cochlear nucleus to removal of the cochlea. J. Comp. Neurol. 302: 810– 823. Moore, D. R., and N. E. Kowalchuk (1988) Auditory brainstem of the ferret: Effects of unilateral cochlear lesions on cochlear nucleus volume and projections to the inferior colliculus. J. Comp. Neurol. 272: 503– 515. Moore, J. K. J. K. Niparko, M. Miller, and E. Linthicum (1994) Effect of profound deafness on a central auditory nucleus. Am. J. Otol. 15: 588– 595. Nordeen, K. W., H. P. Killackey, and L. M. Kitzes (1983) Ascending projections to the inferior colliculus following unilateral cochlear ablation in the neonatal gerbil, Meriones uniguiculatus. J. Comp. Neurol. 214: 144– 153. Nusser, Z., E. Mulvihill, P. Streit, and P. Somogyi (1994) Subsynaptic segregation of metabotropic and ionotropic glutamate receptors as revealed by immunogold localization. Neuroscience 61: 421– 427. Palay, S. L., and V. Chan-Palay (1974) Cerebellar Cortex, Cytology and Organization. New York: Springer-Verlag. Panico, J., and P. Sterling (1995) Retinal neurons and vessels are not fractal but space-filling. J. Comp. Neurol. 361: 479– 490. Parks, T. N. (1979) Afferent influences on the development of the brain stem auditory nuclei of the chicken: Otocyst ablation. J. Comp. Neurol. 183: 665– 677. Parks, T. N., D. A. Taylor, and H. Jackson (1990) Adaptations of synaptic form in an aberrant projection to the avian cochlear nucleus. J. Neurosci. 10: 975– 984. Pasic, T. R., D. R. Moore, and E. W. Rubel (1994) Effect of altered neuronal activity on cell size in the medial nucleus of the trapezoid body and ventral cochlear nucleus of the gerbil. J. Comp. Neurol. 348: 111– 120. Pfeiffer, R. R. (1966) Anteroventral cochlear nucleus: Wave forms of extracellularly recorded spike potentials. Science 154: 667– 668. Porter, R., S. Ghosh, G. D. Lange, and T. G. Smith, Jr. (1991) A fractal analysis of pyramidal neurons in mammalian motor cortex. Neurosci. Lett. 130: 112– 116. Powell, T. P. S., and S. D. Erulkar (1962) Transneuronal cell degeneration in the auditory relay nuclei of the cat. J. Anat. 96: 219– 268. Pujol, R., M. Rebillard, and G. Rebillard (1977) Primary neural disorders in the deaf white cat cochlea. Acta Otolaryngol. 83: 59– 64. Ramóny Cajal, R. (1909) Histologie du Système Nerveux de l'Homme et des Vertèbrès. Paris: A. Maloine. Rawitz, B. (1896) Gehörorgan und gehirn eines weissen hundes mit blauen augen. Morphol. Arbeit. 6: 545– 554. Rebillard, M., G. Rebillard, and R. Pujol (1981) Variability of the hereditary deafness in the white cat. I. Physiology. Hear. Res. 5: 179– 181. Recanzone, G. H., C. E. Schreiner, and M. M. Merzenich (1993) Plasticity in the frequency representation of primary auditory cortex following discrimination training in adult owl monkeys. J. Neurosci. 13: 87– 103. Rees, S., F. H. Guldner, and L. Atikin (1985) Activity dependent plasticity of postsynaptic density structure in the ventral cochlear nucleus of the rat. Brain Res. 325: 370– 374. Robertson, D., and D. R. Irvine (1989) Plasticity of frequency organization in auditory cortex of guinea pigs with partial unllateral deafness. J. Comp. Neurol. 282: 456– 471. Rubel, E. W., and T. N. Parks (1988) Organization and development of the avian brain-stem auditory system. In G. M. Edelman, W. E. Gall, and W. M. Cowan (eds): Auditory Function—Neurobiological Bases of Hearing. New York: John Wiley & Sons, pp. 3– 92. Ryugo, D. K. (1992) The auditory nerve: Peripheral innervation, cell body morphology, and central projections. In D. B. Webster, A. N. Popper, and R. R. Fay (eds): Mammalian Auditory Pathway: Neuroanatomy. New York: Springer-Verlag, pp. 23– 65. Ryugo, D. K., and D. M. Fekete (1982) Morphology of primary axosomatic endings in the anteroventral cochlear nucleus of the cat: A study of the endbulbs of Held. J. Comp. Neurol. 210: 239– 257. Ryugo, D. K., and S. Sento (1991) Synaptic connections of the auditory nerve in cats: Relationship between endbulbs of Held and spherical bushy cells. J. Comp. Neurol. 305: 35– 48. Ryugo, D. K., M. M. Wu, and T. Pongstaporn (1996) Activity related features of synapse morphology: A study of the endbulbs of Held. J. Comp. Neurol. 365: 141– 158. Saada, A. A., P. J. Kim, D. R. Vause, J. K. Niparko, and D. K. Ryugo (1995) Auditory nerve activity and structural integrity of cochlear neural elements in the deaf white cat. Assn. Res. Otolaryngol. Abstr. 18: 176. Saada, A. A., J. K. Niparko, and D. K. Ryugo (1996) Morphological changes in the cochlear nucleus of congenitally deaf white cats. Brain Res. 736: 315– 328. Scheibe, A. (1892) A case of deaf-mutism, with auditory atrophy and anomalies of development in the membranous labyrinth of both ears. Arch. Otolaryngol. 21: 12– 22. Schwartz, I. R., and J. F. Higa (1982) Correlated studies of the ear and brainstem in the deaf white cat: Changes in the spiral ganglion and the medial superior olivary nucleus. Acta Otolaryngol. 93: 9– 18. Seitanidou, T., A. Triller, and H. Korn (1988) Distribution of glycine receptors on the membrane of a central neuron: an immunoelectron microscopy study. J. Neurosci. 8: 4319– 4333. Seldon, H. L., and G. M. Clark (1991) Human cochlear nucleus: Comparison of Nissi-stained neurons from deaf and hearing patients. Brain Res. 551: 185– 194. Sento, S., and D. K. Ryugo (1989) Endbulbs of Held and spherical bushy cells in cats: Morphological correlates with physiological properties. J. Comp. Neurol. 280: 553– 562. Sie, K. C., and E. W. Rubel (1992) Rapid changes in protein synthesis and cell size in the cochlear nucleus following eighth nerve activity blockade or cochlea ablation. J. Comp. Neurol. 320: 501– 508. Smith, T. G. Jr., W. B. Marks, G. D. Lange, W. H. Sheriff, Jr., and E. A. Neale (1989) A fractal analysis of cell images. J. Neurosci. Methods 27: 173– 180. Suga, F., and K. W. Hattler (1970) Physiological and histopathological correlates of hereditary deafness in animals. Laryngoscope 80: 81– 104. Sullivan, W. E., and M. Konishi (1984) Segregation of stimulus phase and intensity coding in the cochlear nucleus of the barn owl. J. Neurosci. 4: 1787– 1799. Treeck, H. H., and W. Pirsig (1979) Differentiation of nerve endings in the cochlear nucleus on morphological and experimental basis. Acta Otolaryngol. 87: 47– 60. Trune, D. R. (1982) Influence of neonatal cochlear removal on the development of mouse cochlear nucleus. I. Number, size, and density of its neurons. J. Comp. Neurol. 209: 409– 424. Waltzman, S. B., N. L. Cohen, and W. H. Shapiro (1992) Use of a multichannel cochlear implant in the congenitally and prelingually deaf population. Laryngoscope 102: 395– 399. Waltzman, S., S. Fisher, J. K. Niparko, and N. Cohen (1994) Predictors of postoperative performance with cochlear implants. Ann. Otol. Rhinol. Laryngol. 165: 15– 18. West, C. D., and J. Harrison (1973) Transneuronal cell atrophy in the deaf white cat. J. Comp. Neurol. 151: 377– 398. Wiesel, T. N., and D. H. Hubel (1963) Effects of visual deprivation on morphology and physiology of cells in the cat's lateral geniculate body. J. Neurophysiol. 26: 973– 993. Wolff, D. (1942) Three generations of deaf white cats. J. Hered. 33: 39– 43. Citing Literature Volume385, Issue225 August 1997Pages 230-244 ReferencesRelatedInformation

Referência(s)