
Indoor air disinfection using a polyester supported TiO 2 photo-reactor
2008; Wiley; Volume: 18; Issue: 6 Linguagem: Inglês
10.1111/j.1600-0668.2008.00548.x
ISSN1600-0668
AutoresMatheus Paes Paschoalino, Wilson F. Jardim,
Tópico(s)TiO2 Photocatalysis and Solar Cells
ResumoIndoor AirVolume 18, Issue 6 p. 473-479 Indoor air disinfection using a polyester supported TiO2 photo-reactor M. P. Paschoalino, M. P. Paschoalino Laboratório de Química Ambiental – Instituto de Química, Universidade Estadual de Campinas – UNICAMP, Campinas, SP, BrazilSearch for more papers by this authorW. F. Jardim, W. F. Jardim Laboratório de Química Ambiental – Instituto de Química, Universidade Estadual de Campinas – UNICAMP, Campinas, SP, BrazilSearch for more papers by this author M. P. Paschoalino, M. P. Paschoalino Laboratório de Química Ambiental – Instituto de Química, Universidade Estadual de Campinas – UNICAMP, Campinas, SP, BrazilSearch for more papers by this authorW. F. Jardim, W. F. Jardim Laboratório de Química Ambiental – Instituto de Química, Universidade Estadual de Campinas – UNICAMP, Campinas, SP, BrazilSearch for more papers by this author First published: 18 November 2008 https://doi.org/10.1111/j.1600-0668.2008.00548.xCitations: 28 Wilson F. JardimLaboratório de Química Ambiental – Instituto de QuímicaUniversidade Estadual de Campinas – UNICAMPCP 615413084-971 Campinas, SPBrazilTel.: +55 019 35213135Fax: +55 019 35213135e-mail: [email protected] Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL References Alberici, R.M. and Jardim, W.F. (1997) Photocatalytic destruction of VOCs in the gas-phase using titanium dioxide, Appl. Catal. B, 14, 55– 68. American Industrial Hygiene Association (AIHA) - Indoor Environmental Quality Committee (1995) Do I Work in a Sick Building?, Fairfax, AIHA. Atlantic Ultraviolet Corporation (2004) Air Borne Infectious Organisms, Hauppauge, (AUC 98-1122/10-02). Blake, D.M., Maness, P., Huang, Z., Wolfrum, E.J., Huang, J. and Jacoby, W.A. (1999) Application of the photocatalytic chemistry of titanium dioxide to disinfection and the killing of cancer cells, Sep. Purif. Meth., 28, 1– 50. Brickus, L.S.R. and Neto, F.R.A. (1997) A qualidade do ar de interiores e a química, Quim. Nova, 22, 65– 74. Butkus, M.A., Edling, L. and Labare, M.P. (2003) The efficacy of silver as a bactericidal agent: advantages, limitations and considerations for future use, J. Water SRT – Aqua, 52, 407– 416. Cho, M., Chung, H., Choi, W. and Yoon, J. (2004) Linear correlation between inactivation of E. coli and OH radical concentration in TiO2 photocatalytic disinfection, Water Res., 38, 1069– 1077. Cordeiro, A.C.S., Leite, S.G.F. and Dezotti, M. (2004) Inativação por Oxidação Fotocatalítica de Escherichia coli e Pseudomonas sp., Quim. Nova, 27, 689– 694. Goswami, D.Y., Trivedi, D.M. and Block, S.S. (1997) Photocatalytic disinfection of indoor air, J. Sol. Energy Eng., 119, 92– 96. Gumy, D., Morais, C., Bowen, P., Pulgarin, C., Giraldo, S., Hajdu, R. and Kiwi, J. (2006) Catalytic activity of commercial of TiO2 powders for the abatement of the bacteria (E-coli) under solar simulated light: Influence of the isoelectric point, Appl. Catal. B, 63, 76– 84. Helfritch, D.J., Feldman, P.L., Roth, J.R., Montie, T.C., Wintenberg, K.K. and Tsai, P.P.(1999) A field enhanced, plasma sterilized, air filter for indoor air application. In: D. Ollis and H. Al-Ekabi (eds) Abstracts, Albuquerque, The Fifth International Conference on Advanced Oxidation Technologies for Water and Air Remediation, 35. Jacoby, W.A., Maness, P.C., Wolfrum, E.J., Blake, D.M. and Fennel, J.A. (1998) Mineralization of bacterial cell mass on a photocatalytic surface in air, Environ. Sci. Technol., 32, 2650– 2653. Kim, J., Gonzalez-Martin, A., McKenzie, S. and Kucera, S.(2001) Development of photocatalytic systems for commercial applications. In: D. Ollis and H. Al-Ekabi (eds) Abstracts, Niagara Falls, ON, Canada, The Sixth International Conference on TiO2 Photocatalytic Purification and Treatment of Water and Air, 34. Kondo, M.M. and Jardim, W.F. (1991) Photodegradation of chloroform and urea using Ag-loaded titanium dioxide as catalyst, Water Res., 25, 823– 827. Kondo, M.M., Orlanda, J.F.F., Ferreira, M.G.A.B. and Grassi, M.T. (2003) Proposição de um reator fotocatalítico para destruição de microrganismos em ambientes interiores, Quim. Nova, 26, 133– 135. Korpi, A., Pasanem, A. and Pasanen, P. (1998) Volatile compounds originating from mixed microbial cultures on building materials under various humidity conditions, Appl. Environ. Microbiol., 64, 2914– 2919. Menzies, D., Popa, J., Hanley, J.A., Rand, T. and Milton, D.K. (2003) Effect of ultraviolet germicidal lights installed in office ventilation systems on workers' health and wellbeing: double-blind multiple crossover trial, Lancet, 362, 1785– 1791. Nadtochenko, V.A., Rincon, A.G., Stanca, S.E. and Kiwi, J. (2005) Dynamics of E. coli membrane cell peroxidation during TiO2 photocatalysis studied by ATR-FTIR spectroscopy and AFM microscopy, J. Photochem. Photobiol. A, 169, 131– 137. Ohtani, B., Zhang, S., Nishimoto, S. and Kagiya, T. (1992) Catalytic and photocatalytic decomposition of ozone at room temperature over titanium (IV) oxide, J. Chem. Soc. Faraday Trans., 88, 1049– 1053. Pal, A., Min, X., Yu, L.E., Pehkonen, S.O. and Ray, M.B. (2005) Photocatalytic inactivation of bioaerosols by TiO2 coated membrane, Int. J. Chem. Reactor Eng., 3, A45. Paschoalino, M.P., Kiwi, J. and Jardim, W.F. (2006) Gas-phase photocatalytic decontamination using polymer supported TiO2, Appl. Catal. B, 68, 68– 73. Phillips, T. (2002) Annihilating Anthrax, Houston, TX, National Aeronautics and Space Administration (NASA). Roots, R. and Okada, S. (1975) Estimation of life times and diffusion distances of radicals envolved in X-ray-induced DNA strend breaks or killing of mammalian cells, Radiat. Res., 64, 306– 320. Shchukin, D.G., Ustinovich, E.A., Kulak, A.I. and Sviridov, D.V. (2004) Heterogeneous photocatalysis in titania-containing liquid foam, Photochem. Photobiol. Sci., 3, 157– 159. Sökmen, M., Candan, F. and Süner, Z. (2001) Disinfection of E. coli by the Ag-TiO2/UV system: lipidperoxidation, J. Photochem. Photobiol. A, 143, 241– 244. Tryk, D.A., Fujishima, A. and Honda, K. (2000) Recent topics in photoelectrochemistry: achievements and future prospects, Electrochim. Acta, 45, 2363– 2376. USEPA (2002) A Brief Guide to Mold, Moisture and Your Home, Washington, DC, US Environmental Protection Agency (EPA 402-K-02-003). USEPA, American Lung Association, Consumer Product Safety Comission and American Medial Association (1996) Indoor Air Pollution. An Introduction for Health Professionals, Darby, Diane Publishing Co. Vohra, A., Goswami, D.Y., Deshpande, D.A. and Block, S.S. (2006) Enhanced photocatalytic disinfection of. indoor air, Appl. Catal. B., 64, 57– 65. Yuranova, T., Rincon, A.G., Pulgarin, C., Laub, D., Xantopoulos, N., Mathieu, H.-J. and Kiwi, J. (2006) Antibacterial textiles prepared by RF-plasma and vacuum-UV mediated deposition of silver, J. Photochem. Photobiol. A, 181, 363– 369. Citing Literature Volume18, Issue6December 2008Pages 473-479 ReferencesRelatedInformation
Referência(s)