Artigo Revisado por pares

Arsenic bioaccumulation and species in marine polychaeta

2005; Wiley; Volume: 19; Issue: 8 Linguagem: Inglês

10.1002/aoc.938

ISSN

1099-0739

Autores

Joel Waring, William A. Maher,

Tópico(s)

Heavy metals in environment

Resumo

Applied Organometallic ChemistryVolume 19, Issue 8 p. 917-929 Speciation Analysis and Environment Arsenic bioaccumulation and species in marine polychaeta Joel Waring, Joel Waring Ecochemistry Laboratory, Applied Ecology Research Group, University of Canberra, Belconnen, ACT 2601, AustraliaSearch for more papers by this authorWilliam Maher, Corresponding Author William Maher [email protected] Ecochemistry Laboratory, Applied Ecology Research Group, University of Canberra, Belconnen, ACT 2601, AustraliaEcochemistry Laboratory, Applied Ecology Research Group, University of Canberra, Belconnen, ACT 2601, Australia.Search for more papers by this author Joel Waring, Joel Waring Ecochemistry Laboratory, Applied Ecology Research Group, University of Canberra, Belconnen, ACT 2601, AustraliaSearch for more papers by this authorWilliam Maher, Corresponding Author William Maher [email protected] Ecochemistry Laboratory, Applied Ecology Research Group, University of Canberra, Belconnen, ACT 2601, AustraliaEcochemistry Laboratory, Applied Ecology Research Group, University of Canberra, Belconnen, ACT 2601, Australia.Search for more papers by this author First published: 14 July 2005 https://doi.org/10.1002/aoc.938Citations: 32AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract Published whole tissue arsenic concentrations in polychaete species tissues range from 1.5–2739 µg arsenic/g dry mass. Higher mean total arsenic concentrations are found in deposit-feeding polychaetes relative to non-deposit-feeding polychaete species collected from the same locations. However, mean arsenic concentrations at some of the locations are skewed by the high arsenic concentrations of Tharyx marioni. There appears to be no direct correlation between sediment arsenic concentrations and polychaete arsenic concentrations. Arsenic bioaccumulation by polychaetes appears to be more controlled by the physiology of the polychaetes rather than exposure to arsenic via ingested material or the prevailing physiochemical conditions. Arsenic concentrations in polychaete tissues can vary greatly. Most polychaete species contain the majority of their arsenic as arsenobetaine (57–98%), with trace concentrations of inorganic arsenic (<1%) and other simple methylated species (<7.5%). However, this is not always the case, with unusually high proportions of arsenite (57%), arsenate (23%) and dimethylarsinic acid (83–87%) in some polychaete species. Arsenobetaine is probably accumulated by polychaetes via organic food sources within the sediment. The presence of relatively high proportions of phosphate arsenoriboside (up to 12%) in some opportunistic omnivorous Nereididae polychaete species may be due to ingestion of macroalgae, benthic diatoms and/or phytoplankton. Consideration of the ecology of individual polychaete species in terms of their habitat type, food preferences, physiology and exposure to arsenic species is needed for the assessment of arsenic uptake pathways and bioaccumulation of arsenic. Future research should collect a range of polychaete species from a wide variety of uncontaminated marine habitats to determine the influence of these ecological factors on total arsenic concentrations and species proportions. Copyright © 2005 John Wiley & Sons, Ltd. REFERENCES 1Edmonds JS, Francesconi KA. Organoarsenic compounds in the marine environment. In Organometallic Compounds in the Environment, PJ Craig (ed.). Wiley: 2003. 2 PL Beesley, GJB Ross, CJ Glasby (eds). Fauna of Australia. Vol. 4A Polychaetes and Allies: The Southern Synthesis. Polychaeta, Myzostomida, Pogonophora, Echiura, Sipuncula. CSIRO Publishing: Melbourne, 2000. 3Hutchings P. An Illustrated Guide to the Estuarine Polychaete Worms of New South Wales. Wetlands Society: NSW, 1984. 4Rouse GW, Pleijel F. Polychaetes. Oxford University Press: Oxford, 2001. 5 RS Wilson, PA Hutchings, CJ Glasby (eds). Polychaetes: An Interactive Identification Guide. CSIRO Publishing: Melbourne, 2003. 6Fauchald K, Jumars PA. Oceanogr. Mar. Biol. Annu. Rev. 1979; 17: 193. 7Penry DL, Jumars PA. Oecologia 1990; 82: 1. 8Hutchings P. Biodivers. Conserv. 1998; 7: 1133. 9Pocklington P, Wells PG. Mar. Pollut. Bull. 1992; 24: 593. 10Riedel GF, Sanders JG, Osman RW. Estuar. Coast. Shelf Sci. 1987; 25: 693. 11Riedel GF, Sanders JG, Osman RW. J. Exp. Mar. Biol. Ecol. 1989; 134: 143. 12Snelgrove PV, Blackburn HT, Hutchings PA, Alongi DM, Grassle FJ, Hummel H, King G, Koike I, Lambshead PJD, Ramsing NB, Solis-Weiss V. Ambio 1997; 26: 578. 13Geiszinger AE, Goessler W, Francesconi KA. Mar. Environ. Res. 2002; 53: 37. 14De Lestang S, Platell ME, Potter IC. J. Exp. Mar. Biol. Ecol. 2000; 246: 241. 15Edgar GJ, Shaw C. J. Exp. Mar. Biol. Ecol. 1995; 194: 83. 16Edmonds JS, Francesconi KA. Mar. Pollut. Bull. 1981; 12: 92. 17Platell ME, Potter IC. J. Exp. Mar. Biol. Ecol. 2001; 261: 31. 18Schafer LN, Platell ME, Valesini FJ, Potter IC. J. Exp. Mar. Biol. Ecol. 2002; 278: 67. 19Barwick M, Maher W. Mar. Environ. Res. 2003; 56: 471. 20Geiszinger AE, Goessler W, Francesconi KA. Environ. Sci. Technol. 2002; 26: 2905. 21Leatherland TM, Burton JD. J. Mar. Biol. Assoc. U. K. 1974; 54: 457. 22Langston WJ. J. Mar. Biol. Assoc. U. K. 1980; 60: 869. 23Gibbs PE, Langston WJ, Burt GR, Pascoe PL. J. Mar. Biol. Assoc. U. K. 1983; 63: 313. 24Shinagawa A, Shiomi K, Yamanaka H, Kikuchi T. Bull. Jpn. Soc. Sci. Fish. 1983; 49: 75. 25Price A. The accumulation, distribution and cycling of arsenic in Lake Macquarie, NSW, Australia. B. App. Science thesis (Honours), University of Canberra, 2001. 26Dean HK, Maurer D, Vargas JA, Tinsman CH. Mar. Pollut. Bull. 1986; 17: 128. 27Jenner HA. Environ. Pollut. 1990; 66: 139. 28Fattorini D, Bocchetti R, Bompadre S, Regoli F. Mar. Environ. Res. 2004; 58: 839. 29Flegal RA, Martin JH. Mar. Pollut. Bull. 1977; 8: 90. 30Hall TM, Merlini L. Mem. Ist. Ital. Idrobiol. Pallanza 1979; 37: 33. 31Hanaoka K, Satow T, Tagawa S, Kaise T. Appl. Organometal. Chem. 1992; 6: 375. 32Kaise T. Chemosphere 1987; 16: 2551. 33Tukai R, Maher WA, McNaught IJ, Ellwood MJ. Mar. Freshwater Res. 2002; 53: 1. 34Goessler W, Maher W, Irgolic KJ, Kuehnelt D, Shclagenhaufen C, Kaise T. Fresenius J. Anal. Chem. 1997; 359: 438. 35Kirby J, Maher W. Appl. Organometal. Chem. 2002; 16: 108. 36Kirby J, Maher W, Chariton A, Krikowa F. Appl. Organometal. Chem. 2002; 16: 192. 37Neff JM. Environ. Toxicol. Chem. 1997; 16: 917. 38Vallee BL, Ulmer DD, Wacker WEC. Arch. Ind. Health, 1960; 21: 132. 39Depledge MH, Rainbow PS. Comp. Biochem. Physiol. C 1990; 97: 1. 40Lee J-S, Lee J-H. Sci. Total Environ. 2005; 338: 229. 41Wang W-X, Stupakoff I, Fisher NS. Mar. Ecol. Prog. Ser. 1999; 178: 281. 42Wang W-X, Fisher NS. Sci. Total Environ. 1999; 237–238: 459. 43Bryan GW, Gibbs PE. J. Mar. Biol. Assoc. U. K. 1980; 60: 641. 44Mason AZ, Jenkins KD, Sullivan PA. J. Mar. Biol. Assoc. U. K. 1988; 68: 61. 45Oremland RS, Stolz JF. Science 2003; 300: 939. 46Reimer KJ. Appl. Organometal. Chem. 1989; 3: 475. 47Matschullat J. Sci. Total Environ. 2000; 249: 297. 48Weeger W, Lievremont D, Perret M, Lagarde F, Hubert J, Leroy M, Lett M. BioMetals 1999; 12: 141. 49Scudlark JR, Johnson DL. Estuar. Coast. Shelf Sci. 1982; 14: 693. 50Shiomi K, Shinagawa A, Azuma M, Yamanaka H, Kikuchi T. Comp. Biochem. Physiol. C 1983; 74: 393. 51Edmonds JS, Shibata Y, Francesconi KA, Rippingales RJ, Morita M. Appl. Organometal. Chem. 1997; 11: 281. 52Kubota R, Kunito T, Tanabe S. Mar. Pollut. Bull., 2002; 45: 218. 53Bryan GW, Langston WJ. Environ. Pollut. 1992; 76: 89. 54Barnes RD. Invertebrate Zoology. Saunders College Publishing: 2003; 267–311. 55Anderson DT. Adaptations of marine animals. In Marine Biology, LS Hammond, SN Synnot (eds). Longman Cheshire: 1994; 65–71. 56Jordana E, Charles F, Grémare A, Amouroux J-M, Chrétiennot-Dinet M-J. J. Exp. Mar. Biol. Ecol. 2001; 266: 219. 57Paxton H. Aust. J. Mar. Freshwater Res. 1979; 30: 265. 58Maher WA, Batley GE. Appl. Organometal. Chem. 1990; 4: 419. Citing Literature Volume19, Issue8August 2005Pages 917-929 ReferencesRelatedInformation

Referência(s)
Altmetric
PlumX