Artigo Acesso aberto Revisado por pares

Geographical Variation in the Acclimation Responses of Drosophila to Temperature Extremes

1993; University of Chicago Press; Volume: 142; Linguagem: Inglês

10.1086/285525

ISSN

1537-5323

Autores

Ary A. Hoffmann, Marcus Watson,

Tópico(s)

Insect and Pesticide Research

Resumo

Previous articleNext article No AccessGeographical Variation in the Acclimation Responses of Drosophila to Temperature ExtremesAry A. Hoffmann, and Marcus WatsonAry A. Hoffmann, and Marcus WatsonPDFPDF PLUS Add to favoritesDownload CitationTrack CitationsPermissionsReprints Share onFacebookTwitterLinkedInRedditEmail SectionsMoreDetailsFiguresReferencesCited by The American Naturalist Volume 142Jul., 1993Supplement: Evolutionary Responses to Environmental Stress Published for The American Society of Naturalists Article DOIhttps://doi.org/10.1086/285525 Views: 29Total views on this site Citations: 122Citations are reported from Crossref Copyright 1993 The University of ChicagoPDF download Crossref reports the following articles citing this article:Aditya Moktan Tamang, Ravi Parkash, Raj Kamal Srivastava, Padmasana Singh Adaptive changes in energy reserves and effects of body melanization on thermal tolerance in Drosophila simulans, Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 271 (Sep 2022): 111258.https://doi.org/10.1016/j.cbpa.2022.111258Mahalia Barter, Luke R. Bonifacio, Andressa Duran, Celine T. Goulet, Reid Tingley, Glenn M. Shea, Shai Meiri, David G. Chapple, Brody Sandel Predictors of geographic range size in Australian skinks, Global Ecology and Biogeography 31, no.11 (Nov 2021): 113–122.https://doi.org/10.1111/geb.13419Hannah E. Davis, Alexandra Cheslock, Heath A. MacMillan Chill coma onset and recovery fail to reveal true variation in thermal performance among populations of Drosophila melanogaster, Scientific Reports 11, no.11 (May 2021).https://doi.org/10.1038/s41598-021-90401-5E. Cvetanovska, R.A. Castañeda, A.P. Hendry, D.B. Conn, A. Ricciardi Cold tolerance varies among invasive populations of the Asian clam ( Corbicula fluminea ), Canadian Journal of Zoology 99, no.88 (Aug 2021): 729–740.https://doi.org/10.1139/cjz-2020-0226Amparo Hidalgo-Galiana, Ignacio Ribera, John S. Terblanche Geographic variation in acclimation responses of thermal tolerance in South African diving beetles (Dytiscidae: Coleoptera), Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 257 (Jul 2021): 110955.https://doi.org/10.1016/j.cbpa.2021.110955Peter Klepsatel, Thirnahalli Nagaraj Girish, Martina Gáliková Acclimation temperature affects thermal reaction norms for energy reserves in Drosophila, Scientific Reports 10, no.11 (Dec 2020).https://doi.org/10.1038/s41598-020-78726-zJessica L. Hoskins, Charlene Janion-Scheepers, Elise Ireland, Keyne Monro, Steven L. Chown Constant and fluctuating temperature acclimations have similar effects on phenotypic plasticity in springtails, Journal of Thermal Biology 93 (Oct 2020): 102690.https://doi.org/10.1016/j.jtherbio.2020.102690Helen M. Stone, Priscilla A. Erickson, Alan O. Bergland Phenotypic plasticity, but not adaptive tracking, underlies seasonal variation in post‐cold hardening freeze tolerance of Drosophila melanogaster, Ecology and Evolution 10, no.11 (Dec 2019): 217–231.https://doi.org/10.1002/ece3.5887Jon C. Vimmerstedt, Dylan J. Padilla Pérez, Michael J. Angilletta, John M. VandenBrooks Oxygen supply limits the heat tolerance of avian embryos, Biology Letters 15, no.1111 (Nov 2019): 20190566.https://doi.org/10.1098/rsbl.2019.0566Lin Kang, Eugenia Rashkovetsky, Katarzyna Michalak, Harold R. Garner, James E. Mahaney, Beverly A. Rzigalinski, Abraham Korol, Eviatar Nevo, Pawel Michalak Genomic divergence and adaptive convergence in Drosophila simulans from Evolution Canyon, Israel, Proceedings of the National Academy of Sciences 116, no.2424 (May 2019): 11839–11844.https://doi.org/10.1073/pnas.1720938116Anne M. Treasure, Steven L. Chown Phenotypic plasticity in locomotor performance of a monophyletic group of weevils accords with the 'warmer is better' hypothesis, The Journal of Experimental Biology 222, no.99 (Apr 2019): jeb195255.https://doi.org/10.1242/jeb.195255Michael J. Angilletta, Catriona Condon, Jacob P. Youngblood Thermal acclimation of flies from three populations of Drosophila melanogaster fails to support the seasonality hypothesis, Journal of Thermal Biology 81 (Apr 2019): 25–32.https://doi.org/10.1016/j.jtherbio.2019.02.009D. P. Svozil, R. K. Kopf, R. J. Watts, A.O. Nicholls Temperature-dependent larval survival and growth differences among populations of Murray cod (Maccullochella peelii), Marine and Freshwater Research 70, no.44 (Jan 2019): 459.https://doi.org/10.1071/MF18178E R Everman, P J Freda, M Brown, A J Schieferecke, G J Ragland, T J Morgan Ovary Development and Cold Tolerance of the Invasive Pest Drosophila suzukii (Matsumura) in the Central Plains of Kansas, United States, Environmental Entomology 47, no.44 (May 2018): 1013–1023.https://doi.org/10.1093/ee/nvy074Tricia M. Markle, Kenneth H. Kozak Low acclimation capacity of narrow‐ranging thermal specialists exposes susceptibility to global climate change, Ecology and Evolution 8, no.99 (Apr 2018): 4644–4656.https://doi.org/10.1002/ece3.4006Ann-Marie Waldvogel, Andreas Wieser, Tilman Schell, Simit Patel, Hanno Schmidt, Thomas Hankeln, Barbara Feldmeyer, Markus Pfenninger The genomic footprint of climate adaptation in Chironomus riparius, Molecular Ecology 27, no.66 (Mar 2018): 1439–1456.https://doi.org/10.1111/mec.14543Alisha A Shah, W Chris Funk, Cameron K Ghalambor Thermal Acclimation Ability Varies in Temperate and Tropical Aquatic Insects from Different Elevations, Integrative and Comparative Biology 57, no.55 (Oct 2017): 977–987.https://doi.org/10.1093/icb/icx101O.O. Uyi, C. Zachariades, E. Marais, M.P. Hill Reduced mobility but high survival: thermal tolerance and locomotor response of the specialist herbivore, Pareuchaetes insulata (Walker) (Lepidoptera: Erebidae), to low temperatures, Bulletin of Entomological Research 107, no.44 (Dec 2016): 448–457.https://doi.org/10.1017/S0007485316001103Suegene Noh, Elizabeth R. Everman, Christopher M. Berger, Theodore J. Morgan Seasonal variation in basal and plastic cold tolerance: Adaptation is influenced by both long‐ and short‐term phenotypic plasticity, Ecology and Evolution 7, no.1414 (Jun 2017): 5248–5257.https://doi.org/10.1002/ece3.3112Mads Fristrup Schou, Marie Brandt Mouridsen, Jesper Givskov Sørensen, Volker Loeschcke, David Gremillet Linear reaction norms of thermal limits in Drosophila : predictable plasticity in cold but not in heat tolerance, Functional Ecology 31, no.44 (Nov 2016): 934–945.https://doi.org/10.1111/1365-2435.12782Poonam Ranga, Ravi Prakash, Nirotpal Mrinal Sibling Drosophila species (Drosophila leontia and Drosophila kikkawai) show divergence for thermotolerance along a latitudinal gradient, Evolutionary Ecology 31, no.11 (Dec 2016): 93–117.https://doi.org/10.1007/s10682-016-9880-1Vinayak Mathur, Paul S. Schmidt Adaptive patterns of phenotypic plasticity in laboratory and field environments in Drosophila melanogaster, Evolution 71, no.22 (Dec 2016): 465–474.https://doi.org/10.1111/evo.13144Belinda Heerwaarden, Vanessa Kellermann, Carla M. Sgrò, Caroline Williams Limited scope for plasticity to increase upper thermal limits, Functional Ecology 30, no.1212 (Jun 2016): 1947–1956.https://doi.org/10.1111/1365-2435.12687A. S. Clemson, C. M. Sgrò, M. Telonis‐Scott Thermal plasticity in D rosophila melanogaster populations from eastern Australia: quantitative traits to transcripts, Journal of Evolutionary Biology 29, no.1212 (Sep 2016): 2447–2463.https://doi.org/10.1111/jeb.12969John Llewelyn, Stewart L. Macdonald, Amberlee Hatcher, Craig Moritz, Ben L. Phillips, Janet Franklin Intraspecific variation in climate‐relevant traits in a tropical rainforest lizard, Diversity and Distributions 22, no.1010 (Aug 2016): 1000–1012.https://doi.org/10.1111/ddi.12466Christophe Plantamp, Katleen Salort, Patricia Gibert, Adeline Dumet, Gladys Mialdea, Nathalie Mondy, Yann Voituron All or nothing: Survival, reproduction and oxidative balance in Spotted Wing Drosophila (Drosophila suzukii) in response to cold, Journal of Insect Physiology 89 (Jun 2016): 28–36.https://doi.org/10.1016/j.jinsphys.2016.03.009David T. Bilton, Garth N. Foster Observed shifts in the contact zone between two forms of the diving beetle Hydroporus memnonius are consistent with predictions from sexual conflict, PeerJ 4 (Jun 2016): e2089.https://doi.org/10.7717/peerj.2089Svitlana V. Serga, Oleksandr M. Maistrenko, Andrii I. Rozhok, Timothy A. Mousseau, Iryna A. Kozeretska Colonization of a temperate-zone region by the fruit fly Drosophilasimulans (Diptera: Drosophilidae), Canadian Journal of Zoology 93, no.1010 (Oct 2015): 799–804.https://doi.org/10.1139/cjz-2015-0018Alex R. Gunderson, Jonathon H. Stillman Plasticity in thermal tolerance has limited potential to buffer ectotherms from global warming, Proceedings of the Royal Society B: Biological Sciences 282, no.18081808 (Jun 2015): 20150401.https://doi.org/10.1098/rspb.2015.0401Francisco Bozinovic, María J.M. Orellana, Sebastián I. Martel, José M. Bogdanovich Testing the heat-invariant and cold-variability tolerance hypotheses across geographic gradients, Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 178 (Dec 2014): 46–50.https://doi.org/10.1016/j.cbpa.2014.08.009B. van Heerwaarden, R. F. H. Lee, J. Overgaard, C. M. Sgrò No patterns in thermal plasticity along a latitudinal gradient in Drosophila simulans from eastern Australia, Journal of Evolutionary Biology 27, no.1111 (Sep 2014): 2541–2553.https://doi.org/10.1111/jeb.12510Ravi Parkash, Poonam Ranga, Dau Dayal Aggarwal Developmental acclimation to low or high humidity conditions affect starvation and heat resistance of Drosophila melanogaster, Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 175 (Sep 2014): 46–56.https://doi.org/10.1016/j.cbpa.2014.05.006Kimberly S. Sheldon, Joshua J. Tewksbury The impact of seasonality in temperature on thermal tolerance and elevational range size, Ecology 95, no.88 (Aug 2014): 2134–2143.https://doi.org/10.1890/13-1703.1Pavel Beracko, Alexandra Rogánska Intra- and interspecific variations in life strategies of Erpobdella octoculata and Erpobdella vilnensis in different habitats along the longitudinal gradient of stream, Limnologica 48 (Jul 2014): 28–38.https://doi.org/10.1016/j.limno.2014.05.001R. Parkash, D. Singh, C. Lambhod Divergent strategies for adaptations to stress resistance in two tropical Drosophila species: effects of developmental acclimation in D. bipectinata and the invasive species D. malerkotliana, Journal of Experimental Biology 217, no.66 (Nov 2013): 924–934.https://doi.org/10.1242/jeb.096818Ravi Parkash, Poonam Ranga Seasonal changes in humidity impact drought resistance in tropical Drosophila leontia: Testing developmental effects of thermal versus humidity changes, Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 169 (Mar 2014): 33–43.https://doi.org/10.1016/j.cbpa.2013.12.007Catriona Condon, Brandon S. Cooper, Sam Yeaman, Michael J. Angilletta TEMPORAL VARIATION FAVORS THE EVOLUTION OF GENERALISTS IN EXPERIMENTAL POPULATIONS OF DROSOPHILA MELANOGASTER, Evolution 68, no.33 (Nov 2013): 720–728.https://doi.org/10.1111/evo.12296O. A. Bubliy, T. N. Kristensen, V. Loeschcke Stress-induced plastic responses in Drosophila simulans following exposure to combinations of temperature and humidity levels, Journal of Experimental Biology 216, no.2424 (Sep 2013): 4601–4607.https://doi.org/10.1242/jeb.092502Álvaro J. Aguilar-Kirigin, Daniel E. Naya Latitudinal patterns in phenotypic plasticity: the case of seasonal flexibility in lizards' fat body size, Oecologia 173, no.33 (May 2013): 745–752.https://doi.org/10.1007/s00442-013-2682-zRon Rotkopf, Yehonatan Alcalay, Einav Bar-Hanin, Erez David Barkae, Ofer Ovadia Slow growth improves compensation ability: examining growth rate and starvation endurance in pit-building antlions from semi-arid and hyper-arid regions, Evolutionary Ecology 27, no.66 (Apr 2013): 1129–1144.https://doi.org/10.1007/s10682-013-9644-0Ravi Parkash, Poonam Ranga Divergence for tolerance to thermal-stress related traits in two Drosophila species of immigrans group, Journal of Thermal Biology 38, no.77 (Oct 2013): 396–406.https://doi.org/10.1016/j.jtherbio.2013.05.004Jyoti Chahal, Sudhir Kumar Kataria, Ravi Parkash Invasion and adaptation of a warm-adapted species to montane localities: effect of acclimation potential, Journal of Experimental Biology 216, no.99 (May 2013): 1578–1586.https://doi.org/10.1242/jeb.080200Ravi Parkash, Dau Dayal Aggarwal, Divya Singh, Chanderkala Lambhod, Poonam Ranga Divergence of water balance mechanisms in two sibling species (Drosophila simulans and D. melanogaster): effects of growth temperatures, Journal of Comparative Physiology B 183, no.33 (Oct 2012): 359–378.https://doi.org/10.1007/s00360-012-0714-3Jesper S. Bechsgaard, Ary A. Hoffmann, Carla Sgró, Volker Loeschcke, Trine Bilde, Torsten N. Kristensen, Axel Imhof A Comparison of Inbreeding Depression in Tropical and Widespread Drosophila Species, PLoS ONE 8, no.22 (Feb 2013): e51176.https://doi.org/10.1371/journal.pone.0051176Vincent Foray, Emmanuel Desouhant, Yann Voituron, Vanessa Larvor, David Renault, Hervé Colinet, Patricia Gibert Does cold tolerance plasticity correlate with the thermal environment and metabolic profiles of a parasitoid wasp?, Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 164, no.11 (Jan 2013): 77–83.https://doi.org/10.1016/j.cbpa.2012.10.018Ron Rotkopf, Erez David Barkae, Einav Bar-Hanin, Yehonatan Alcalay, Ofer Ovadia, Gabriele Sorci Multi-Axis Niche Examination of Ecological Specialization: Responses to Heat, Desiccation and Starvation Stress in Two Species of Pit-Building Antlions, PLoS ONE 7, no.1111 (Nov 2012): e50884.https://doi.org/10.1371/journal.pone.0050884B. Heerwaarden, R. F. H. Lee, B. Wegener, A. R. Weeks, C. M. Sgró Complex patterns of local adaptation in heat tolerance in Drosophila simulans from eastern Australia, Journal of Evolutionary Biology 25, no.99 (Jul 2012): 1765–1778.https://doi.org/10.1111/j.1420-9101.2012.02564.xO. A. BUBLIY, T. N. KRISTENSEN, V. KELLERMANN, V. LOESCHCKE Humidity affects genetic architecture of heat resistance in Drosophila melanogaster, Journal of Evolutionary Biology 25, no.66 (Apr 2012): 1180–1188.https://doi.org/10.1111/j.1420-9101.2012.02506.xT. KETOLA, V. KELLERMANN, T. N. KRISTENSEN, V. LOESCHCKE Constant, cycling, hot and cold thermal environments: strong effects on mean viability but not on genetic estimates, Journal of Evolutionary Biology 25, no.66 (Apr 2012): 1209–1215.https://doi.org/10.1111/j.1420-9101.2012.02513.xOleg A. Bubliy, Torsten N. Kristensen, Vanessa Kellermann, Volker Loeschcke Plastic responses to four environmental stresses and cross-resistance in a laboratory population of Drosophila melanogaster, Functional Ecology 26, no.11 (Oct 2011): 245–253.https://doi.org/10.1111/j.1365-2435.2011.01928.xChristopher W. Weldon, John S. Terblanche, Steven L. Chown Time-course for attainment and reversal of acclimation to constant temperature in two Ceratitis species, Journal of Thermal Biology 36, no.88 (Dec 2011): 479–485.https://doi.org/10.1016/j.jtherbio.2011.08.005Francisco Bozinovic, Piero Calosi, John I. Spicer Physiological Correlates of Geographic Range in Animals, Annual Review of Ecology, Evolution, and Systematics 42, no.11 (Dec 2011): 155–179.https://doi.org/10.1146/annurev-ecolsys-102710-145055Torsten N. Kristensen, Volker Loeschcke, Trine Bilde, Ary A. Hoffmann, Carla Sgró, Kristina Noreikienė, Marti Ondrésik, Jesper S. Bechsgaard NO INBREEDING DEPRESSION FOR LOW TEMPERATURE DEVELOPMENTAL ACCLIMATION ACROSS MULTIPLE DROSOPHILA SPECIES, Evolution 65, no.1111 (Jun 2011): 3195–3201.https://doi.org/10.1111/j.1558-5646.2011.01359.xLindsey C. Fallis, Juan Jose Fanara, Theodore J. Morgan Genetic variation in heat-stress tolerance among South American Drosophila populations, Genetica 139, no.1010 (Feb 2012): 1331–1337.https://doi.org/10.1007/s10709-012-9635-zVladimír Koštál, Jaroslava Korbelová, Jan Rozsypal, Helena Zahradníčková, Jana Cimlová, Aleš Tomčala, Petr Šimek, Amit Singh Long-Term Cold Acclimation Extends Survival Time at 0°C and Modifies the Metabolomic Profiles of the Larvae of the Fruit Fly Drosophila melanogaster, PLoS ONE 6, no.99 (Sep 2011): e25025.https://doi.org/10.1371/journal.pone.0025025Katherine A. Mitchell, Carla M. Sgrò, Ary A. Hoffmann Phenotypic plasticity in upper thermal limits is weakly related to Drosophila species distributions, Functional Ecology 25, no.33 (Dec 2010): 661–670.https://doi.org/10.1111/j.1365-2435.2010.01821.xBelinda van Heerwaarden, Carla M. Sgrò THE EFFECT OF DEVELOPMENTAL TEMPERATURE ON THE GENETIC ARCHITECTURE UNDERLYING SIZE AND THERMAL CLINES IN DROSOPHILA MELANOGASTER AND D. SIMULANS FROM THE EAST COAST OF AUSTRALIA, Evolution 65, no.44 (Dec 2010): 1048–1067.https://doi.org/10.1111/j.1558-5646.2010.01196.xJ.K. Tomberlin, R. Mohr, M.E. Benbow, A.M. Tarone, S. VanLaerhoven A Roadmap for Bridging Basic and Applied Research in Forensic Entomology, Annual Review of Entomology 56, no.11 (Jan 2011): 401–421.https://doi.org/10.1146/annurev-ento-051710-103143Heath A. MacMillan, Brent J. Sinclair Mechanisms underlying insect chill-coma, Journal of Insect Physiology 57, no.11 (Jan 2011): 12–20.https://doi.org/10.1016/j.jinsphys.2010.10.004Hiroko Udaka, Chiaki Ueda, Shin G. Goto Survival rate and expression of Heat-shock protein 70 and Frost genes after temperature stress in Drosophila melanogaster lines that are selected for recovery time from temperature coma, Journal of Insect Physiology 56, no.1212 (Dec 2010): 1889–1894.https://doi.org/10.1016/j.jinsphys.2010.08.008C. M. SGRÒ, J. OVERGAARD, T. N. KRISTENSEN, K. A. MITCHELL, F. E. COCKERELL, A. A. HOFFMANN A comprehensive assessment of geographic variation in heat tolerance and hardening capacity in populations of Drosophila melanogaster from eastern Australia, Journal of Evolutionary Biology 23, no.1111 (Sep 2010): 2484–2493.https://doi.org/10.1111/j.1420-9101.2010.02110.xDAVID SÁNCHEZ-FERNÁNDEZ, PIERO CALOSI, ANDREW ATFIELD, PAULA ARRIBAS, JOSEFA VELASCO, JOHN I. SPICER, ANDRÉS MILLÁN, DAVID T. BILTON Reduced salinities compromise the thermal tolerance of hypersaline specialist diving beetles, Physiological Entomology 35, no.33 (Aug 2010): 265–273.https://doi.org/10.1111/j.1365-3032.2010.00734.xCASPER NYAMUKONDIWA, JOHN S. TERBLANCHE Within-generation variation of critical thermal limits in adult Mediterranean and Natal fruit flies Ceratitis capitata and Ceratitis rosa: thermal history affects short-term responses to temperature, Physiological Entomology 35, no.33 (Aug 2010): 255–264.https://doi.org/10.1111/j.1365-3032.2010.00736.xSeema Sisodia, Bashisth N. Singh Influence of developmental temperature on cold shock and chill coma recovery in Drosophila ananassae: Acclimation and latitudinal variations among Indian populations, Journal of Thermal Biology 35, no.33 (Apr 2010): 117–124.https://doi.org/10.1016/j.jtherbio.2010.01.001Goran Zivanovic, Francesc Mestres Viabilities of Drosophila subobscura homo- and heterokaryotypes at optimal and stress temperatures. I. Analysis over several years, Hereditas 147, no.22 (Apr 2010): 70–81.https://doi.org/10.1111/j.1601-5223.2009.02163.xGoran Zivanovic, Francesc Mestres Viabilities of D. subobscura homo- and heterokaryotypes at optimal and stress temperatures. II. Seasonal component analysis, Hereditas 147, no.22 (Apr 2010): 82–89.https://doi.org/10.1111/j.1601-5223.2010.02164.xA. A. Hoffmann Physiological climatic limits in Drosophila: patterns and implications, Journal of Experimental Biology 213, no.66 (Feb 2010): 870–880.https://doi.org/10.1242/jeb.037630Piero Calosi, David T. Bilton, John I. Spicer, Stephen C. Votier, Andrew Atfield What determines a species' geographical range? Thermal biology and latitudinal range size relationships in European diving beetles (Coleoptera: Dytiscidae), Journal of Animal Ecology 79, no.11 (Jan 2010): 194–204.https://doi.org/10.1111/j.1365-2656.2009.01611.xR. Parkash, V. Sharma, B. Kalra Correlated changes in thermotolerance traits and body color phenotypes in montane populations of Drosophila melanogaster : analysis of within‐ and between‐population variations, Journal of Zoology 280, no.11 (Dec 2009): 49–59.https://doi.org/10.1111/j.1469-7998.2009.00641.xL. RAKO, N. A. POULSEN, J. SHIRRIFFS, A. A. HOFFMANN Clinal variation in post-winter male fertility retention; an adaptive overwintering strategy in Drosophila melanogaster, Journal of Evolutionary Biology 22, no.1212 (Dec 2009): 2438–2444.https://doi.org/10.1111/j.1420-9101.2009.01852.xP. SARUP, J. FRYDENBERG, V. LOESCHCKE Local adaptation of stress related traits in Drosophila buzzatii and Drosophila simulans in spite of high gene flow, Journal of Evolutionary Biology 22, no.55 (May 2009): 1111–1122.https://doi.org/10.1111/j.1420-9101.2009.01725.xSteven L. Chown, Keafon R. Jumbam, Jesper G. Sørensen, John S. Terblanche Phenotypic variance, plasticity and heritability estimates of critical thermal limits depend on methodological context, Functional Ecology 23, no.11 (Feb 2009): 133–140.https://doi.org/10.1111/j.1365-2435.2008.01481.xNaoko Kato, Makoto Takasago, Kenji Omasa, Tadashi Miyashita Coadaptive changes in physiological and biophysical traits related to thermal stress in web spiders, Naturwissenschaften 95, no.1212 (Aug 2008): 1149–1153.https://doi.org/10.1007/s00114-008-0431-7Elrike Marais, Steven L. Chown Beneficial acclimation and the Bogert effect, Ecology Letters 11, no.1010 (Oct 2008): 1027–1036.https://doi.org/10.1111/j.1461-0248.2008.01213.xChristopher M. Palmer, Katharina Siebke Cold hardiness of Apteropanorpa tasmanica Carpenter (Mecoptera: Apteropanorpidae), Journal of Insect Physiology 54, no.77 (Jul 2008): 1148–1156.https://doi.org/10.1016/j.jinsphys.2008.04.016Keafon R. Jumbam, Susan Jackson, John S. Terblanche, Melodie A. McGeoch, Steven L. Chown Acclimation effects on critical and lethal thermal limits of workers of the Argentine ant, Linepithema humile, Journal of Insect Physiology 54, no.66 (Jun 2008): 1008–1014.https://doi.org/10.1016/j.jinsphys.2008.03.011Gregory J. Ragland, Joel G. Kingsolver EVOLUTION OF THERMOTOLERANCE IN SEASONAL ENVIRONMENTS: THE EFFECTS OF ANNUAL TEMPERATURE VARIATION AND LIFE-HISTORY TIMING IN WYEOMYIA SMITHII, Evolution 62, no.66 (Jun 2008): 1345–1357.https://doi.org/10.1111/j.1558-5646.2008.00367.xMcCabe C Kenny, Alan Wilton, J William O Ballard Seasonal trade-off between starvation resistance and cold resistance in temperate wild-caught Drosophila simulans, Australian Journal of Entomology 47, no.11 (Feb 2008): 20–23.https://doi.org/10.1111/j.1440-6055.2007.00623.xJONATHAN KELTY Rapid cold-hardening of Drosophila melanogaster in a field setting, Physiological Entomology 32, no.44 (Dec 2007): 343–350.https://doi.org/10.1111/j.1365-3032.2007.00584.xSteven L Chown, Sarette Slabber, Melodie A McGeoch, Charlene Janion, Hans Petter Leinaas Phenotypic plasticity mediates climate change responses among invasive and indigenous arthropods, Proceedings of the Royal Society B: Biological Sciences 274, no.16251625 (Aug 2007): 2531–2537.https://doi.org/10.1098/rspb.2007.0772P. Calosi, D. T. Bilton, J. I. Spicer, A. Atfield Thermal tolerance and geographical range size in the Agabus brunneus group of European diving beetles (Coleoptera: Dytiscidae), Journal of Biogeography 0, no.00 (Sep 2007): 070924030322001–???.https://doi.org/10.1111/j.1365-2699.2007.01787.xJohn S. Terblanche, Elrike Marais, Steven L. Chown Stage-related variation in rapid cold hardening as a test of the environmental predictability hypothesis, Journal of Insect Physiology 53, no.55 (May 2007): 455–462.https://doi.org/10.1016/j.jinsphys.2007.01.006Jesper G Sørensen, Volker Loeschcke Studying stress responses in the post-genomic era: its ecological and evolutionary role, Journal of Biosciences 32, no.33 (May 2007): 447–456.https://doi.org/10.1007/s12038-007-0044-xSarette Slabber, M. Roger Worland, Hans Petter Leinaas, Steven L. Chown Acclimation effects on thermal tolerances of springtails from sub-Antarctic Marion Island: Indigenous and invasive species, Journal of Insect Physiology 53, no.22 (Feb 2007): 113–125.https://doi.org/10.1016/j.jinsphys.2006.10.010Ary A. Hoffmann, Andrew R. Weeks Climatic selection on genes and traits after a 100 year-old invasion: a critical look at the temperate-tropical clines in Drosophila melanogaster from eastern Australia, Genetica 129, no.22 (Sep 2006).https://doi.org/10.1007/s10709-006-9010-zRobert A. Krebs, Kimberly A. Thompson Direct and correlated effects of selection on flight after exposure to thermal stress in Drosophila melanogaster, Genetica 128, no.1-31-3 (Sep 2006): 217–225.https://doi.org/10.1007/s10709-005-5704-xS. Bahrndorff, M. Holmstrup, H. Petersen, V. Loeschcke Geographic variation for climatic stress resistance traits in the springtail Orchesella cincta, Journal of Insect Physiology 52, no.99 (Sep 2006): 951–959.https://doi.org/10.1016/j.jinsphys.2006.06.005Steven L. Chown, John S. Terblanche Physiological Diversity in Insects: Ecological and Evolutionary Contexts, (Jan 2006): 50–152.https://doi.org/10.1016/S0065-2806(06)33002-0Lea Rako, Ary A. Hoffmann Complexity of the cold acclimation response in Drosophila melanogaster, Journal of Insect Physiology 52, no.11 (Jan 2006): 94–104.https://doi.org/10.1016/j.jinsphys.2005.09.007Brent J. Sinclair, Stephen P. Roberts Acclimation, shock and hardening in the cold, Journal of Thermal Biology 30, no.88 (Dec 2005): 557–562.https://doi.org/10.1016/j.jtherbio.2005.07.002John S. Terblanche, Brent J. Sinclair, C. Jaco Klok, Mhairi L. McFarlane, Steven L. Chown The effects of acclimation on thermal tolerance, desiccation resistance and metabolic rate in Chirodica chalcoptera (Coleoptera: Chrysomelidae), Journal of Insect Physiology 51, no.99 (Sep 2005): 1013–1023.https://doi.org/10.1016/j.jinsphys.2005.04.016A. A. HOFFMANN, J. SHIRRIFFS, M. SCOTT Relative importance of plastic vs genetic factors in adaptive differentiation: geographical variation for stress resistance in Drosophila melanogaster from eastern Australia, Functional Ecology 19, no.22 (Apr 2005): 222–227.https://doi.org/10.1111/j.1365-2435.2005.00959.xMaureen L. Stanton, Denise A. Thiede Statistical convenience vs biological insight: consequences of data transformation for the analysis of fitness variation in heterogeneous environments, New Phytologist 166, no.11 (Jan 2005): 319–338.https://doi.org/10.1111/j.1469-8137.2004.01311.xK. Bowler Acclimation, heat shock and hardening, Journal of Thermal Biology 30, no.22 (Feb 2005): 125–130.https://doi.org/10.1016/j.jtherbio.2004.09.001S.S Macdonald, L Rako, P Batterham, A.A Hoffmann Dissecting chill coma recovery as a measure of cold resistance: evidence for a biphasic response in Drosophila melanogaster, Journal of Insect Physiology 50, no.88 (Aug 2004): 695–700.https://doi.org/10.1016/j.jinsphys.2004.05.004S. L. Chown, K. J. Gaston, D. Robinson Macrophysiology: large-scale patterns in physiological traits and their ecological implications, Functional Ecology 18, no.22 (Apr 2004): 159–167.https://doi.org/10.1111/j.0269-8463.2004.00825.xJean R. David, Roland Allemand, Pierre Capy, Mohamed Chakir, Patricia Gibert, Georges Pétavy, Brigitte Moreteau Comparative life histories and ecophysiology of Drosophila melanogaster and D. simulans, (Jan 2004): 151–163.https://doi.org/10.1007/978-94-007-0965-2_13Josselyne Boulétreau-Merle, Pierre Fouillet, Julien Varaldi Divergent strategies in low temperature environment for the sibling species Drosophila melanogaster and D. simulans: overwintering in extension border areas of France and comparison with African populations, Evolutionary Ecology 17, no.5-65-6 (Sep 2003): 523–548.https://doi.org/10.1023/B:EVEC.0000005632.21186.21Ary A. Hoffmann, Jesper G. Sørensen, Volker Loeschcke Adaptation of Drosophila to temperature extremes: bringing together quantitative and molecular approaches, Journal of Thermal Biology 28, no.33 (Apr 2003): 175–216.https://doi.org/10.1016/S0306-4565(02)00057-8C. JACO KLOK, STEVEN L. CHOWN Resistance to temperature extremes in sub-Antarctic weevils: interspecific variation, population differentiation and acclimation, Biological Journal of the Linnean Society 78, no.33 (Mar 2003): 401–414.https://doi.org/10.1046/j.1095-8312.2003.00154.xIvan Gomez-Mestre, Miguel Tejedo LOCAL ADAPTATION OF AN ANURAN AMPHIBIAN TO OSMOTICALLY STRESSFUL ENVIRONMENTS, Evolution 57, no.88 (Jan 2003): 1889.https://doi.org/10.1554/03-093Oleg A Bubliy, Ari Riihimaa, Fabian M Norry, Volker Loeschcke Variation in resistance and acclimation to low-temperature stress among three geographical strains of Drosophila melanogaster, Journal of Thermal Biology 27, no.55 (Oct 2002): 337–344.https://doi.org/10.1016/S0306-4565(01)00098-5Ary A. Hoffmann, Alisha Anderson, Rebecca Hallas Opposing clines for high and low temperature resistance in Drosophila melanogaster, Ecology Letters 5, no.55 (Sep 2002): 614–618.https://doi.org/10.1046/j.1461-0248.2002.00367.xPaul Mitrovski, Ary A. Hoffmann Postponed reproduction as an adaptation to winter conditions in Drosophila melanogaster : evidence for clinal variation under semi-natural conditions, Proceedings of the Royal Society of London. Series B: Biological Sciences 268, no.14811481 (Oct 2001): 2163–2168.https://doi.org/10.1098/rspb.2001.1787Steven L Chown Physiological variation in insects: hierarchical levels and implications, Journal of Insect Physiology 47, no.77 (Jul 2001): 649–660.https://doi.org/10.1016/S0022-1910(00)00163-3Vaughn S. Cooper, Albert F. Bennett, Richard E. Lenski EVOLUTION OF THERMAL DEPENDENCE OF GROWTH RATE OF ESCHERICHIA COLI POPULATIONS DURING 20,000 GENERATIONS IN A CONSTANT ENVIRONMENT, Evolution 55, no.55 (May 2007): 889–896.https://doi.org/10.1111/j.0014-3820.2001.tb00606.xPatricia Gibert, Brigitte Moreteau, Georges Pétavy, Dev Karan, Jean R. David CHILL-COMA TOLERANCE, A MAJOR CLIMATIC ADAPTATION AMONG DROSOPHILA SPECIES, Evolution 55, no.55 (May 2007): 1063–1068.https://doi.org/10.1111/j.0014-3820.2001.tb00623.xVaughn S. Cooper, Albert F. Bennett, Richard E. Lenski , Evolution 55, no.55 ( 2001): 889.https://doi.org/10.1554/0014-3820(2001)055[0889:EOTDOG]2.0.CO;2Patricia Gibert, Brigitte Moreteau, Georges Pétavy, Dev Karan, Jean R. David , Evolution 55, no.55 ( 2001): 1063.https://doi.org/10.1554/0014-3820(2001)055[1063:CCTAMC]2.0.CO;2Ary A. Hoffmann, R. Hallas, C. Sinclair, P. Mitrovski LEVELS OF VARIATION IN STRESS RESISTANCE IN DROSOPHILA AMONG STRAINS, LOCAL POPULATIONS, AND GEOGRAPHIC REGIONS: PATTERNS FOR DESICCATION, STARVATION, COLD RESISTANCE, AND ASSOCIATED TRAITS, Evolution 55, no.88 (Jan 2001): 1621.https://doi.org/10.1554/0014-3820(2001)055[1621:LOVISR]2.0.CO;2Charles F. Baer, Joseph Travis DIRECT AND CORRELATED RESPONSES TO ARTIFICIAL SELECTION ON ACUTE THERMAL STRESS TOLERANCE IN A LIVEBEARING FISH, Evolution 54, no.11 (May 2007): 238–244.https://doi.org/10.1111/j.0014-3820.2000.tb00024.x Harshman, Hoffmann, Clark Selection for starvation resistance in Drosophila melanogaster : physiological correlates, enzyme activities and multiple stress responses, Journal of Evolutionary Biology 12, no.22 (Mar 1999): 370–379.https://doi.org/10.1046/j.1420-9101.1999.00024.xR. Stratman, T. A. Markow Resistance to thermal stress in desert Drosophila, Functional Ecology 12, no.66 (Mar 2002): 965–970.https://doi.org/10.1046/j.1365-2435.1998.00270.xDavid Berrigan, Ary A. Hoffmann Correlations between measures of heat resistance and acclimation in two species of Drosophila and their hybrids, Biological Journal of the Linnean Society 64, no.44 (Jan 2008): 449–462.https://doi.org/10.1111/j.1095-8312.1998.tb00343.x Ricardo B. R. Azevedo , Vernon French , and Linda Partridge Life‐History Consequences of Egg Size in Drosophila melanogaster Azevedo, French, & Partridge, The American Naturalist 150, no.22 (Jul 2015): 250–282.https://doi.org/10.1086/286065ARY A HOFFMANN, HAYAT DAGHER, MIRIAM HERCUS, DAVID BERRIGAN Comparing Different Measures of Heat Resistance in Selected Lines of Drosophila melanogaster, Journal of Insect Physiology 43, no.44 (Apr 1997): 393–405.https://doi.org/10.1016/S0022-1910(96)00108-4Robert A. Krebs, Martin E. Feder NATURAL VARIATION IN THE EXPRESSION OF THE HEAT‐SHOCK PROTEIN HSP70 IN A POPULATION OF DROSOPHILA MELANOGASTER AND ITS CORRELATION WITH TOLERANCE OF ECOLOGICALLY RELEVANT THERMAL STRESS, Evolution 51, no.11 (May 2017): 173–179.https://doi.org/10.1111/j.1558-5646.1997.tb02398.xMarcus J. O. Watson, Ary A. Hoffmann ACCLIMATION, CROSS-GENERATION EFFECTS, AND THE RESPONSE TO SELECTION FOR INCREASED COLD RESISTANCE IN DROSOPHILA, Evolution 50, no.33 (May 2017): 1182–1192.https://doi.org/10.1111/j.1558-5646.1996.tb02359.xRobert A. Krebs, Vittoria Torre, Volker Loeschcke, Sandro Cavicchi Heat-Shock Resistance in Drosophila Populations: Analysis of Variation in Reciprocal Cross Progeny, Hereditas 124, no.11 (May 2004): 47–55.https://doi.org/10.1111/j.1601-5223.1996.00047.xSandro Cavicchi, Daniela Guerra, Vittoria La Torre, Raymond B. Huey CHROMOSOMAL ANALYSIS OF HEAT‐SHOCK TOLERANCE IN DROSOPHILA MELANOGASTER EVOLVING AT DIFFERENT TEMPERATURES IN THE LABORATORY, Evolution 49, no.44 (May 2017): 676–684.https://doi.org/10.1111/j.1558-5646.1995.tb02304.xBranka Krstevska, Ary A. Hoffmann The effects of acclimation and rearing conditions on the response of tropical and temperate populations ofDrosophila melanogaster andD. simulans to a temperature gradient (Diptera: Drosophilidae), Journal of Insect Behavior 7, no.33 (May 1994): 279–288.https://doi.org/10.1007/BF01989735Raymond B. Huey, David L. Denlinger, Richard E. Jr Lee Evolutionary physiology of insect thermal adaptation to cold environments, (): 223–241.https://doi.org/10.1017/CBO9780511675997.010

Referência(s)