Numerical analysis of hygro‐thermal behaviour and damage of concrete at high temperature
1999; Wiley; Volume: 4; Issue: 1 Linguagem: Inglês
10.1002/(sici)1099-1484(199901)4
ISSN1099-1484
AutoresDariusz Gawin, C.E. Majorana, Bernhard A. Schrefler,
Tópico(s)Structural Response to Dynamic Loads
ResumoMechanics of Cohesive-frictional MaterialsVolume 4, Issue 1 p. 37-74 Research Article Numerical analysis of hygro-thermal behaviour and damage of concrete at high temperature D. Gawin, D. Gawin Department of Building Physics and Building Materials, Technical University of Lodz, Al. Politechniki 6, 93-590 Lodz, PolandSearch for more papers by this authorC. E. Majorana, C. E. Majorana Dipartimento di Costruzioni e Trasporti, Universitàdegli studi di Padova, Via F. Marzolo, 9, I-35131 Padova, ItalySearch for more papers by this authorB. A. Schrefler, Corresponding Author B. A. Schrefler Dipartimento di Costruzioni e Trasporti, Universitàdegli studi di Padova, Via F. Marzolo, 9, I-35131 Padova, ItalyUniversità degli studi di Padova, Dipartimento di Costruzioni e Trasporti, Via F. Marzolo 9, I-35 131 Padova, ItalySearch for more papers by this author D. Gawin, D. Gawin Department of Building Physics and Building Materials, Technical University of Lodz, Al. Politechniki 6, 93-590 Lodz, PolandSearch for more papers by this authorC. E. Majorana, C. E. Majorana Dipartimento di Costruzioni e Trasporti, Universitàdegli studi di Padova, Via F. Marzolo, 9, I-35131 Padova, ItalySearch for more papers by this authorB. A. Schrefler, Corresponding Author B. A. Schrefler Dipartimento di Costruzioni e Trasporti, Universitàdegli studi di Padova, Via F. Marzolo, 9, I-35131 Padova, ItalyUniversità degli studi di Padova, Dipartimento di Costruzioni e Trasporti, Via F. Marzolo 9, I-35 131 Padova, ItalySearch for more papers by this author First published: 19 January 1999 https://doi.org/10.1002/(SICI)1099-1484(199901)4:1 3.0.CO;2-SCitations: 242AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract A computational analysis of hygro-thermal and mechanical behaviour of concrete structures at high temperature is presented. The evaluation of thermal, hygral and mechanical performance of this material, including damage effects, needs the knowledge of the heat and mass transfer processes. These are simulated within the framework of a coupled model where non-linearities due to high temperatures are accounted for. The constitutive equations are discussed in some detail. The discretization of the governing equations is carried out by Finite Elements in space and Finite Differences in time. Copyright © 1999 John Wiley & Sons, Ltd. REFERENCES 1 Whitaker, S., ‘ Simultaneous heat mass and momentum transfer in porous media: a theory of drying’, Advances in Heat Transfer, Vol. 13 Academic Press, New York, 1977. 10.1016/S0065-2717(08)70223-5 Web of Science®Google Scholar 2 Bear, J., Dynamics of fluids in Porous Media, Dover, New York, 1988. Google Scholar 3 Bear, J., Hydraulics of Groundwater, McGraw Hill, New York, 1979. Google Scholar 4 Bear, J. and Bachmat, Y., Introduction to Modelling of Transport Phenomena in Porous Media, Kluwer, Dordrecht, 1990. 10.1007/978-94-009-1926-6 Google Scholar 5 Bear, J. and Bachmat, Y., ‘Macroscopic modelling of transport phenomena in porous media. 1: the continuum approach’, Transp. Porous Media, 1, 213–240 (1986). 10.1007/BF00238182 Web of Science®Google Scholar 6 Bear, J. and Bachmat, Y., ‘Macroscopic modelling of transport phenomena in porous media. 2: appications to mass momentum and energy transfer’, Transp. Porous Media, 1, 241–269 (1986). 10.1007/BF00238182 CASWeb of Science®Google Scholar 7 Hassanizadeh, M. and Gray, W. G., ‘General conservation equations for multiphase systems: 1. Averaging technique’, Adv. Water Res., 2, 131–144 (1979). 10.1016/0309-1708(79)90025-3 Web of Science®Google Scholar 8 Hassanizadeh, M. and Gray, W. G., ‘General conservation equations for multiphase systems. 2: mass, momenta, energy and entropy equations’, Adv. Water Res., 2, 191–203 (1979). 10.1016/0309-1708(79)90035-6 Web of Science®Google Scholar 9 Hassanizadeh, M. and Gray, W. G., ‘General conservation equations for multiphase systems. 3: constitutive theory for porous media’, Adv. Water Res., 3, 25–40 (1980). 10.1016/0309-1708(80)90016-0 Web of Science®Google Scholar 10 Schrefler, B. A., ‘F. E. in environmental engineering: coupled thermo-hydro-mechanical processes in porous media’, Arch. Comput. Meth. Engng., 2, 1–54 (1995). 10.1007/BF02736173 Google Scholar 11 Bazant, Z. P. and Wittmann, F. H., Creep and Shrinkage in Concrete Structures, Wiley, New York, 1982. Google Scholar 12 Z. P. Bazant (ed.), Mathematical Modelling of Creep and Shrinkage of Concrete, Wiley, Chichester, 1988. Google Scholar 13 J. C. Maso (ed.), Pore Structure and Construction Materials Properties, Chapman & Hall, London, 1987. Google Scholar 14 Bazant, Z. P. and Thonguthai, W., ‘Pore pressure and drying of concrete at high temperature’, J. Engng. Mech. Div. ASCE, 104, 1059–1079 (1978). Web of Science®Google Scholar 15 Bazant, Z. P. and Thonguthai, W., ‘Pore pressure in heated concrete walls: theoretical prediction’, Mag. Concrete Res. 31(107), 67–76 (1979). 10.1680/macr.1979.31.107.67 Web of Science®Google Scholar 16 ASHRAE Handbook, Fundamentals, ASHRAE, Atlanta, 1993. Google Scholar 17 Forsyth, P. A. and Simpson, R. B., ‘A two-phase, two-component model for natural convection in a porous medium’, Int. J. Numer Meth. Fluids, 12, 655–682 (1991). 10.1002/fld.1650120705 CASWeb of Science®Google Scholar 18 Thomas, H. R. and Sansom, M. R., ‘Fully coupled analysis of heat, moisture and air transfer in unsaturated soil’, J. Engng. Mech., 121(3), 392–405 (1995). 10.1061/(ASCE)0733-9399(1995)121:3(392) Web of Science®Google Scholar 19 Harmathy, T. Z. and Allen, L. W., ‘Thermal properties of selected masonry unit concretes’, ACI J., 132–142 (1973). CASGoogle Scholar 20 Gregg, S. J. and Sing, K. S. W., Adsorption, Surface Area and Porosity, 2nd ed., Academic Press, London, 1982. Google Scholar 21 Daian, J. F., ‘Condensation and isothermal water transfer in cement mortar, Part I—Pore size distribution, equilibrium, water condensation and imbibition’, Transp. Porous Media, 3, 563–589 (1988). 10.1007/BF00959103 CASWeb of Science®Google Scholar 22 Chaube, R. P., Shimomura, T. and Maekawa, K., ‘ Multi-phase water movement in concrete as a multi-component system’, in Creep and Shrinkage of Concrete, Z. P. Bazant and I. Carol eds, RILEM, 1993. Google Scholar 23 Gawin, D., Baggio, P. and Schrefler, B. A., ‘Modelling heat and moisture transfer in deformable porous building materials’, Arch. Civil Engng., 42(3), 325–349 (1996). Google Scholar 24 Baggio, P., Majorana, C. E. and Schrefler, B. A., ‘Thermo-hydro-mechanical analysis of concrete’, Int. J. Numer Meth. Fluids, 20, 573–595 (1995). 10.1002/fld.1650200611 CASWeb of Science®Google Scholar 25 Gawin, D. and Schrefler, B. A., ‘Thermo- hydro- mechanical analysis of partially saturated porous materials’, Engng. Comput., 13(7), 113–143 (1996). 10.1108/02644409610151584 Web of Science®Google Scholar 26 Gawin, D., Majorana, C. E. and Schrefler, B. A., ‘ Hygro- thermic and mechanical behaviour of concrete at high temperatures’, in Advances in Computational Mechanics, Z. Wanxie, C. Gengdong and L. Xikui eds, Int. Academic Publishers, Beijing, 1996, pp. 221–242. Google Scholar 27 Couture, F., Jomaa, W. and Puiggali, J.-R., ‘Relative permeability relations: a key factor for a drying model’, Transp. Porous Media, 23, 303–335 (1996). 10.1007/BF00167101 CASWeb of Science®Google Scholar 28 Lewis, R. W. and Schrefler, B. A., The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media, Wiley, New York, 1998. Google Scholar 29 Tamon, H., Okazaki, M. and Toei, R., ‘Flow mechanism of adsorbate through porous media in presence of capillary condensation’, AIChE J., 27(2), 271–277 (1981). 10.1002/aic.690270214 CASWeb of Science®Google Scholar 30 Perre, P., ‘Measurements of softwoods' permeability to air: importance upon the drying model’, Int. Comm. Heat Mass Transfer, 14, 519–529 (1987). 10.1016/0735-1933(87)90016-9 Web of Science®Google Scholar 31 Perre, P. and Degiovanni, A., ‘Simulation par volumes finis des transfers couplés en milieux poreux anisotropes: séchage du bois à basse et à haute température’, Int. J. Heat Mass Transfer, 33(11), 2463–2478 (1990). 10.1016/0017-9310(90)90004-E Web of Science®Google Scholar 32 Selih, J., Sousa, A. C. M. and Bremner, T. W., ‘Moisture transport in initially fully saturated concrete during drying’, Transport Porous Media, 24, 81–106 (1996). 10.1007/BF00175604 CASWeb of Science®Google Scholar 33 Bolzon, G., Schrefler, B. A. and Zienkiewicz, O. C., Elastoplastic soil constitutive laws generalized to partially saturated states’, Géotechnique, 46, 279–289 (1996). 10.1680/geot.1996.46.2.279 Web of Science®Google Scholar 34 Schrefler, B. A. and Gawin, D., ‘The effective stress principle: incremental or finite form? Int. J. Numer. Analyt. Meth. Geomech., 20(11), 785–815 (1996). 10.1002/(SICI)1096-9853(199611)20:11 3.0.CO;2-6 Web of Science®Google Scholar 35 Mazars, J. and Pijaudier-Cabot, J., ‘Continuum damage theory—application to concrete’, J. Eng. Mech. ASCE, 115(2), 345–365 (1989). 10.1061/(ASCE)0733-9399(1989)115:2(345) Web of Science®Google Scholar 36 Mazars, J., ‘ Application de la mecanique de l'endommagement au comportament non lineaire et la rupture du beton de structure’, Thesy de Doctorat d'Etat L. M. T., Universite de Paris, France, 1984. Google Scholar 37 Mazars, J., ‘ Description of the behaviour of composite concretes under complex loadings through continuum damage mechanics’, reprinted from Proc. 60th U.S. National Congress of Applied Mechanics, J. P. Lamb, ed., published by The American Society of Mechanical Engineering, 1986. Web of Science®Google Scholar 38 Majorana, C., Salomoni, V. and Schrefler, B., ‘ A constitutive relationship for high performance and ultra high performance concrete’, Proc. of EURO-C' 1998 ‘Computational Modelling of Concrete Structure, Badgastein, Austria, 1998. Google Scholar 39 CEB-FIP Model Code 90, p. 2.1.9. Google Scholar 40 Nasrallah, S. B. and Perre, P., ‘Detailed study of a model of heat and mass transfer during convective drying of porous media’, Int. J. Heat Mass Transfer, 31(5), 957–967 (1988). 10.1016/0017-9310(88)90084-1 Web of Science®Google Scholar 41 Bazant, Z. P. and Najjar, L. J., ‘Nonlinear water diffusion in nonsaturated concrete, Matériaux Constructions (Paris), 5(25), 3–20 (1972). 10.1007/BF02479073 CASGoogle Scholar 42 Reid, R. C., Praunsnitz, J. M. and Bruce, E. P., The Properties of Gases and Liquids, 4th ed., McGraw-Hill, New York, 1987. 10.1002/aic.690210313 PubMedGoogle Scholar 43 Daian, J. F., ‘Condensation and isothermal water transfer in cement mortar. Part II—transient condensation of water vapour’, Transp. Porous Media, 44, 1–16 (1989). Google Scholar 44 Ilic, M. and Turner, I. W., ‘Convective drying of a consolidated slab of wet porous material’, Int. J. Heat Mass Transfer, 32(12), 957–967 (1989). 10.1016/0017-9310(89)90196-8 Web of Science®Google Scholar 45 Mason, E. A. and Monchik, L., ‘Survey of the equation of state and transport properties of moist gases’, Humidity Moisture Measurement Control Sci., 3, 257–272 (1965). Google Scholar 46 Scheidegger, A. E., The Physics of Flow through Porous Media, 2nd ed., Univ. of Toronto Press, Toronto, 1960. Google Scholar 47 Schneider, U. and Herbst, H. J., ‘Permeabilitaet und Porositaet von Beton bei hohen Temperaturen’ (in German), Deutscher Ausschuss Stahlbeton, 403, 23–52 (1989). Google Scholar 48 Baggio, P., Bonacina, C. and Strada, M., ‘Tasporto di calore e di massa nel calcestruzzo cellulare’ (in Italian), La Termotecnica, 45(12), 53–60 (1993). Google Scholar 49 Incropera, F. P. and de Witt, D. P., Fundamentals of Heat and Mass Transfer, 3rd ed, Wiley, New York, 1990. Google Scholar 50 Gawin, D., A model of hygro-thermic behaviour of unsaturated concrete at high temperatures, Proc. 2nd Int. Scientific Conf., Analytical Models and New Concepts in Mechanics of Concrete Structures, Lodz, Poland, 12–14 June, 1996, pp. 65–71. Google Scholar 51 Zienkiewicz, O. C. and Taylor, R. L., The Finite Element Method., Vol. 1, 4th ed., McGraw Hill, London, 1989. Google Scholar 52 Zienkiewicz, O. C. and Taylor, R. L., The Finite Element Method, Vol. 2, 4th ed., McGraw Hill, London, 1991. Google Scholar 53 ISO/IEC Guide 52, Fire tests—Vocabulary. Google Scholar 54 Bazant, Z. P. and Kaplan, M. F., Concrete at High Temperatures: Material Properties and Mathematical Models, Section 2.3.5 Pore Pressures and Thermal Spalling, Longman, Harlow, 1996, pp. 36–38. Google Scholar Citing Literature Volume4, Issue1January 1999Pages 37-74 ReferencesRelatedInformation
Referência(s)