Artigo Acesso aberto Revisado por pares

Determination of the photon beam attenuation by the BrainLAB imaging couch: angular and field size dependence

2009; Wiley; Volume: 10; Issue: 3 Linguagem: Inglês

10.1120/jacmp.v10i3.2979

ISSN

1526-9914

Autores

Christopher F. Njeh, Timothy W Raines, Mark W. Saunders,

Tópico(s)

Medical Imaging Techniques and Applications

Resumo

Highly attenuating radiation treatment couches are no longer useful in the present era of radiotherapy utilizing IMRT and IGRT. Carbon fibers couch tops with its high tensile strength and low density present a useful alternative. The objective of the current study was to quantify the attenuation of megavoltage photons through a Brainlab imaging couch top and headrest at various angles and field sizes. At normal incidence, the couch attenuated 6 MV photons by 4.9% and 3.4% for 5 x 5 cm(2) and 10 x 10 cm(2) field sizes respectively. The headrest on the other hand only attenuated 6 MV photons by 2.5% and 1.6% respectively. There was no significant attenuation of the 18 MV beam by either the couch or the headrest. We found the attenuation to be dependent on the gantry angle, with the highest attenuation recorded at 1200. At this angle, the couch attenuated the 6 MV photon beam by 10% and 8.3% for the 5 x 5 cm(2) and 10 x 10 cm(2) field sizes respectively. Similarly, 18 MV photon beam was attenuated by 3.6% and 3.4% for the 5 x 5 cm(2) and 10 x 10 cm(2) field sizes at 1200 gantry angle. The highest attenuation for the headrest on the other hand occurred at 110 degrees gantry angle. For the 6 MV photon beam the headrest attenuation at this angle was 6.3% and 5.6% for the 5 x 5 cm(2) and 10 x 10 cm(2) field sizes respectively. Similarly for the 18 MV the attenuation was 2.3% and 2.1% 5 x 5 cm(2) and 10 x 10 cm(2) field sizes respectively. It apparent that the use of the Brainlab imaging couch and headrest in IMRT with posterior beams will results in significant decrease in the dose delivered to the target.

Referência(s)