Artigo Acesso aberto Revisado por pares

CHAOTIC ITINERANCY AS A MECHANISM OF IRREGULAR CHANGES BETWEEN SYNCHRONIZATION AND DESYNCHRONIZATION IN A NEURAL NETWORK

2004; Imperial College Press; Volume: 03; Issue: 02 Linguagem: Inglês

10.1142/s021963520400049x

ISSN

1757-448X

Autores

Ichiro Tsuda, Hiroshi Fujii, Satoru Tadokoro, Takuo Yasuoka, Yutaka Yamaguti,

Tópico(s)

Nonlinear Dynamics and Pattern Formation

Resumo

Journal of Integrative NeuroscienceVol. 03, No. 02, pp. 159-182 (2004) Research ReportsNo AccessCHAOTIC ITINERANCY AS A MECHANISM OF IRREGULAR CHANGES BETWEEN SYNCHRONIZATION AND DESYNCHRONIZATION IN A NEURAL NETWORKICHIRO TSUDA, HIROSHI FUJII, SATORU TADOKORO, TAKUO YASUOKA, and YUTAKA YAMAGUTIICHIRO TSUDA Department of Mathematics, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan, HIROSHI FUJII Department of Mathematics, Graduate School of Science, Hokkaido University, Sapporo 060-0810, JapanDepartment of Information and Communication Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan, SATORU TADOKORO Department of Mathematics, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan, TAKUO YASUOKA Department of Mathematics, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan, and YUTAKA YAMAGUTI Department of Mathematics, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japanhttps://doi.org/10.1142/S021963520400049XCited by:47 PreviousNext AboutSectionsPDF/EPUB ToolsAdd to favoritesDownload CitationsTrack CitationsRecommend to Library ShareShare onFacebookTwitterLinked InRedditEmail AbstractWe investigate the dynamic character of a network of electrotonically coupled cells consisting of class I point neurons, in terms of a finite dimensional dynamical system. We classify a subclass of class I point neurons, called class I* point neurons. Based on this classification, we use a reduced Hindmarsh-Rose (H-R) model, which consists of two dynamical variables, to construct a network model consisting of electrotonically coupled H-R neurons. Although biologically simple, the system is sufficient to extract the essence of the complex dynamics, which the system may yield under certain physiological conditions. The network model produces a transitory behavior as well as a periodic motion and spatio-temporal chaos. The transitory dynamics that the network model exhibits is shown numerically to be chaotic itinerancy. The transitions appear between various metachronal waves and all-synchronization states. The network model shows that this transitory dynamics can be viewed as a chaotic switch between synchronized and desynchronized states. Despite the use of spatially discrete point neurons as basic elements of the network, the overall dynamics exhibits scale-free activity including various scales of spatio-temporal patterns.Keywords:Gap junction-coupled systemclass I* neuronsdynamic cell assemblychaotic itinerancyMilnor attractormetachronal wavessynchronization References A. Aertsen, M. Erb and G. Palm, Physica D 75, 103 (1994), DOI: 10.1016/0167-2789(94)90278-X. Crossref, ISI, Google ScholarP. Ashwin and J. Swift, J. Nonlinear Sci. 2, 69 (1992), DOI: 10.1007/BF02429852. Crossref, ISI, Google ScholarG. Barna and I. Tsuda, Phys. Lett. A 175, 421 (1993), DOI: 10.1016/0375-9601(93)90994-B. Crossref, ISI, Google ScholarR. Benzi, A. Sutera and A. Vulpiani, J. Phys. A 14, L453 (1981), DOI: 10.1088/0305-4470/14/11/006. Crossref, Google ScholarM. Breakspear, J. R. Terry and K. J. Friston, Network-Comp. Neural. 14, 703 (2003), DOI: 10.1088/0954-898X/14/4/305. Crossref, Medline, ISI, Google ScholarJ. A. Connor and C. F. Stevens, J. Physiol. (Lond.) 213, 1 (1971). Crossref, Google ScholarJ. A. Connor and C. F. Stevens, J. Physiol. (Lond.) 213, 21 (1971). Crossref, Google ScholarJ. A. Connor and C. F. Stevens, J. Physiol. (Lond.) 213, 31 (1971). Crossref, Google ScholarJ. A. Connor, D. Walter and R. McKown, Biophys. J. 18, 81 (1977), DOI: 10.1016/S0006-3495(77)85598-7. Crossref, Medline, ISI, Google ScholarR. Eckhornet al., Biol. Cybern. 60, 121 (1988), DOI: 10.1007/BF00202899. Crossref, Medline, ISI, Google ScholarJ. P. Eckmann and D. Ruelle, Rev. Mod. Phys. 57, 617 (1985), DOI: 10.1103/RevModPhys.57.617. Crossref, ISI, Google Scholar W. J. Freeman , Societies of brains – a study in the neuroscience of love hate ( Lawrence Erlbaum Associates, Inc. , Hillsdale , 1995 ) . Google ScholarW. J. Freeman, Neural Networks 13, 11 (2000), DOI: 10.1016/S0893-6080(99)00093-3. Crossref, Medline, ISI, Google ScholarH. Fujiiet al., Neural Networks 9, 1303 (1996), DOI: 10.1016/S0893-6080(96)00054-8. Crossref, Medline, ISI, Google ScholarM. Galarreta and S. Hestrin, Nature 402, 72 (1999). Crossref, Medline, ISI, Google ScholarJ. R. Gibson, M. Beierlein and B. W. Connors, Nature 402, 75 (1999). Crossref, Medline, ISI, Google ScholarC. Grayet al., Visual Neurosci. 8, 337 (1992), DOI: 10.1017/S0952523800005071. Crossref, Medline, ISI, Google ScholarC. M. Grayet al., Science 338, 334 (1989). Medline, ISI, Google ScholarS. K. Han, C. Kurrer and Y. Kuramoto, Phys. Rev. Lett. 75, 3190 (1995), DOI: 10.1103/PhysRevLett.75.3190. Crossref, Medline, ISI, Google ScholarS. K. Han, C. Kurrer and Y. Kuramoto, Int. J. Bifurcat. Chaos 7, 869 (1997). Link, ISI, Google ScholarJ. L. Hindmarsh and R. M. Rose, P. Roy. Soc. Lond. B. Bio. 221, 87 (1984), DOI: 10.1098/rspb.1984.0024. Crossref, Medline, ISI, Google ScholarA. L. Hodgkin, J. Physiol. 107, 165 (1948). Crossref, Medline, ISI, Google ScholarA. L. Hodgkin and A. F. Huxley, J. Physiol. 117, 500 (1952). Crossref, Medline, ISI, Google ScholarK. Ikeda, K. Otsuka and K. Matsumoto, Prog. Theor. Phys. Supp. 99, 295 (1989), DOI: 10.1143/PTPS.99.295. Crossref, Google ScholarE. M. Izhikevich, Int. J. Bifurcat. Chaos 10, 1171 (2000). Link, ISI, Google ScholarK. Kaneko, Physica D 41, 137 (1990), DOI: 10.1016/0167-2789(90)90119-A. Crossref, ISI, Google ScholarK. Kaneko, Phys. Rev. Lett. 78, 2736 (1997), DOI: 10.1103/PhysRevLett.78.2736. Crossref, ISI, Google Scholar K. Kaneko and I. Tsuda , Complex systems: chaos and beyond - a constructive approach with applications in life sciences ( Springer-Verlag , 2001 ) . Crossref, Google ScholarK. Kaneko and I. Tsuda (eds.), Chaos 13, (2003), DOI: 10.1063/1.1607783. Google ScholarL. Kay, K. Shimoide and W. J. Freeman, Int. J. Bifurcat. Chaos 5, 849 (1995). Link, ISI, Google ScholarI. Lampl, I. Reichova and D. Ferster, Neuron 22, 361 (1999), DOI: 10.1016/S0896-6273(00)81096-X. Crossref, Medline, ISI, Google ScholarH. Liljenstrom, P. Arhem and C. Blomberg (eds.), Int. J. Neural. Syst. 7, (1996), DOI: 10.1142/S0129065796000488. Medline, ISI, Google ScholarK. Matsumoto and I. Tsuda, J. Stat. Phys. 31, 87 (1983), DOI: 10.1007/BF01010923. Crossref, ISI, Google ScholarJ. Milnor, Commun. Math. Phys. 99, 177 (1985), DOI: 10.1007/BF01212280. Crossref, ISI, Google ScholarC. Morris and H. Lecar, Biophys. J. 35, 193 (1981), DOI: 10.1016/S0006-3495(81)84782-0. Crossref, Medline, ISI, Google ScholarV. I. Oseledec, Trans. Moscow Math. Soc. 19, 197 (1968). ISI, Google ScholarA. Raffone and C. van Leeuwen, Chaos 13, 1090 (2003), DOI: 10.1063/1.1602211. Crossref, Medline, ISI, Google ScholarJ. Rinzel, Fed. Proc. 44, 2944 (1985). Medline, Google ScholarJ. Rinzel and G. B. Ermentrout, Method in Neuronal Modeling: from Synapses to Networks, eds. C. Koch and I. Segev (MIT Press, Cambridge, MA, 1989) pp. 135–169. Google Scholar Roessler, O. E., Chaotic oscillations: an example of hyperchaos, in: Nonlinear Oscillations in Biology, ed. F. C. Hoppensteadt (Lectures in Appl. Math., Amer. Math. Soc.) 141-156, 1979 . Google ScholarO. E. Roessleret al., Int. J. Intell. Syst. 10, 15 (1995). Crossref, ISI, Google ScholarR. M. Rose and J. L. Hindmarsh, P. Roy. Soc. Lond. B. Bio. 237, 267 (1989), DOI: 10.1098/rspb.1989.0049. Crossref, Medline, ISI, Google Scholar R. Rosen , Life itself ( Columbia University Press , New York , 1991 ) . Google ScholarM. Sano and Y. Sawada, Phys. Rev. Lett. 55, 1082 (1985), DOI: 10.1103/PhysRevLett.55.1082. Crossref, Medline, ISI, Google ScholarT. Sauer, Abstracts for SIAM pacific rim dynamical systems conference p. 51. Google ScholarT. Sauer, Chaos 13, 947 (2003), DOI: 10.1063/1.1582332. Crossref, Medline, ISI, Google ScholarN. Schweighofer, K. Doya and M. Kawato, J. Neurophysiol. 82, 804 (1999). Crossref, Medline, ISI, Google ScholarC. Skarda and W. J. Freeman, Behav. Brain Sci. 10, 161 (1987), DOI: 10.1017/S0140525X00047336. Crossref, ISI, Google ScholarJ. J. Sloper, Brain Res. 44, 641 (1972), DOI: 10.1016/0006-8993(72)90327-7. Crossref, Medline, ISI, Google ScholarG. Tamaset al., Neuroscience 3, 366 (2000). Medline, ISI, Google ScholarI. Tsuda, E. Koerner and H. Shimizu, Prog. Theor. Phys. 78, 51 (1987), DOI: 10.1143/PTP.78.51. Crossref, ISI, Google ScholarI. Tsuda, World Future 32, 167 (1991), DOI: 10.1080/02604027.1991.9972257. Crossref, Google ScholarI. Tsuda, Behav. Brain Sci. 24, 793 (2001), DOI: 10.1017/S0140525X01000097. Crossref, Medline, ISI, Google ScholarI. Tsuda and T. Umemura, Chaos 13, 926 (2003), DOI: 10.1063/1.1599131. Medline, ISI, Google Scholar von der Marlsburg, C., The correlation theory of brain function, Internal Report 81-2, Goettingen, Max Planck Institute for Biophys. Chem., 1981 . Google ScholarH. R. Wilson, J. Theor. Biol. 200, 375 (1999), DOI: 10.1006/jtbi.1999.1002. Crossref, Medline, ISI, Google Scholar H. R. Wilson , Spikes, Decisions and Actions ( Oxford University Press , 1999 ) . Google Scholar FiguresReferencesRelatedDetailsCited By 47A Hierarchy of Solutions for $$N = 2^{n}$$Sindre W. Haugland21 February 2023Neurodynamical Computing at the Information Boundaries of Intelligent SystemsJoseph D. Monaco and Grace M. Hwang27 December 2022 | Cognitive Computation, Vol. 28Continuously Bursting Simulations and Analytical Solutions of the Neocortical Neurons ModelJalil Rashidinia and Mehri Sajjadian8 November 2018 | Differential Equations and Dynamical Systems, Vol. 29, No. 4Chaos may enhance expressivity in cerebellar granular layerKeita Tokuda, Naoya Fujiwara, Akihito Sudo and Yuichi Katori1 Apr 2021 | Neural Networks, Vol. 136Network model of predictive coding based on reservoir computing for multi-modal processing of visual and auditory signalsYoshihiro Yonemura and Yuichi Katori1 Jan 2021 | Nonlinear Theory and Its Applications, IEICE, Vol. 12, No. 2Synchronization of Chaos in Neural SystemsSou Nobukawa and Haruhiko Nishimura25 June 2020 | Frontiers in Applied Mathematics and Statistics, Vol. 6Itinerant complexity in networks of intrinsically bursting neuronsSiva Venkadesh, Ernest Barreto and Giorgio A. Ascoli1 Jun 2020 | Chaos: An Interdisciplinary Journal of Nonlinear Science, Vol. 30, No. 6Chaotic dynamics as a mechanism of rapid transition of hippocampal local field activity between theta and non-theta statesKeita Tokuda, Yuichi Katori and Kazuyuki Aihara1 Nov 2019 | Chaos: An Interdisciplinary Journal of Nonlinear Science, Vol. 29, No. 11A Three-Modules Scenario in An Interpretation of Visual Hallucination in Dementia With Lewy Bodies and Preliminary Results of Computer ExperimentsShigetoshi NARA, Hiroshi FUJII, Hiromichi TSUKADA and Ichiro TSUDA1 Jul 2019Dynamic Computation in Visual Thalamocortical NetworksRoy Moyal and Shimon Edelman16 May 2019 | Entropy, Vol. 21, No. 5Chaotic itinerancy within the coupled dynamics between a physical body and neural oscillator networksJihoon Park, Hiroki Mori, Yuji Okuyama, Minoru Asada and Zhong-Ke Gao10 August 2017 | PLOS ONE, Vol. 12, No. 8MATHEMATICAL PHASE MODEL OF NEURAL POPULATIONS INTERACTION IN MODULATION OF REM/NREM SLEEPPaolo Acquistapace, Anna P. Candeloro, Vladimir Georgiev and Maria L. Manca17 November 2016 | Mathematical Modelling and Analysis, Vol. 21, No. 6Spontaneous exchange of leader-laggard relationship in mutually coupled synchronized semiconductor lasersKazutaka Kanno, Takuya Hida, Atsushi Uchida and Masatoshi Bunsen17 May 2017 | Physical Review E, Vol. 95, No. 5Iterative free-energy optimization for recurrent neural networks (INFERNO)Alexandre Pitti, Philippe Gaussier, Mathias Quoy and Wael El-Deredy10 March 2017 | PLOS ONE, Vol. 12, No. 3INFERNO: A Novel Architecture for Generating Long Neuronal Sequences with SpikesAlex Pitti, Philippe Gaussier and Mathias Quoy31 May 2017Self-Organization with Constraints—A Mathematical Model for Functional DifferentiationIchiro Tsuda, Yutaka Yamaguti and Hiroshi Watanabe26 February 2016 | Entropy, Vol. 18, No. 3Segmental Bayesian estimation of gap-junctional and inhibitory conductance of inferior olive neurons from spike trains with complicated dynamicsHuu Hoang, Okito Yamashita, Isao T. Tokuda, Masa-aki Sato and Mitsuo Kawato et al.21 May 2015 | Frontiers in Computational Neuroscience, Vol. 9Synthetic Modeling of Autonomous Learning with a Chaotic Neural NetworkMasatoshi Funabashi3 May 2015 | International Journal of Bifurcation and Chaos, Vol. 25, No. 04Chaotic itinerancy and its roles in cognitive neurodynamicsIchiro Tsuda1 Apr 2015 | Current Opinion in Neurobiology, Vol. 31Random graph theory and neuropercolation for modeling brain oscillations at criticalityRobert Kozma and Marko Puljic1 Apr 2015 | Current Opinion in Neurobiology, Vol. 31Multistate network for loop searching system with self-recovery propertyKei-Ichi Ueda, Masaaki Yadome and Yasumasa Nishiura21 February 2014 | Physical Review E, Vol. 89, No. 2Adaptive coupling of inferior olive neurons in cerebellar learningIsao T. Tokuda, Huu Hoang, Nicolas Schweighofer and Mitsuo Kawato1 Nov 2013 | Neural Networks, Vol. 47Novelty-induced memory transmission between two nonequilibrium neural networksYongtao Li and Ichiro Tsuda28 December 2012 | Cognitive Neurodynamics, Vol. 7, No. 3Deformation of Attractor Landscape via Cholinergic Presynaptic Modulations: A Computational Study Using a Phase Neuron ModelTakashi Kanamaru, Hiroshi Fujii, Kazuyuki Aihara and Francisco José Esteban11 January 2013 | PLoS ONE, Vol. 8, No. 1Dynamical analysis on duplicating-and-assimilating process: Toward the understanding of mirror-neuron systemsHunseok Kang and Ichiro Tsuda28 January 2013 | Journal of Integrative Neuroscience, Vol. 11, No. 04Ophiuroid robot that self-organizes periodic and non-periodic arm movementsTakeshi Kano, Shota Suzuki, Wataru Watanabe and Akio Ishiguro23 May 2012 | Bioinspiration & Biomimetics, Vol. 7, No. 3Chaotic dynamics as a possible mechanism of rapid change of hippocampal local field activity between theta rhythm and large irregular activityKeita Tokuda, Yuichi Katori and Kazuyuki Aihara16 July 2012 | BMC Neuroscience, Vol. 13, No. S1Rewiring-Induced Chaos in Pulse-Coupled Neural NetworksTakashi Kanamaru and Kazuyuki Aihara1 Apr 2012 | Neural Computation, Vol. 24, No. 4A decentralized control scheme for orchestrating versatile arm movements in ophiuroid omnidirectional locomotionWataru Watanabe, Takeshi Kano, Shota Suzuki and Akio Ishiguro20 July 2011 | Journal of The Royal Society Interface, Vol. 9, No. 66Transitory behaviors in diffusively coupled nonlinear oscillatorsSatoru Tadokoro, Yutaka Yamaguti, Hiroshi Fujii and Ichiro Tsuda20 January 2011 | Cognitive Neurodynamics, Vol. 5, No. 1Synchrony of Two Brain Regions Predicts the Blood Oxygen Level Dependent Activity of a ThirdYoung-Ah Rho, Randy Anthony McIntosh and Viktor K. Jirsa1 Jan 2011 | Brain Connectivity, Vol. 1, No. 1The role of chaotic resonance in cerebellar learningIsao T. Tokuda, Cheol E. Han, Kazuyuki Aihara, Mitsuo Kawato and Nicolas Schweighofer1 Sep 2010 | Neural Networks, Vol. 23, No. 7Metastable chimera states in community-structured oscillator networksMurray Shanahan1 Mar 2010 | Chaos: An Interdisciplinary Journal of Nonlinear Science, Vol. 20, No. 1Cross-modal and scale-free action representations through enactionAlex Pitti, Hassan Alirezaei and Yasuo Kuniyoshi1 Mar 2009 | Neural Networks, Vol. 22, No. 2Hypotheses on the functional roles of chaotic transitory dynamicsIchiro Tsuda1 Mar 2009 | Chaos: An Interdisciplinary Journal of Nonlinear Science, Vol. 19, No. 1Balancing autonomy and environmental response with hierarchical chaotic dynamicsM. Funabashi and S. Aoki1 Feb 2009The balance of nature: Reflections on the physics and mathematics structure of the living world and the human genomeMaría Luisa Martínez‐Frías15 Jul 2008 | American Journal of Medical Genetics Part A, Vol. 146A, No. 14CHAOS REALITY IN THE BRAINICHIRO TSUDA and HIROSHI FUJII21 November 2011 | Journal of Integrative Neuroscience, Vol. 06, No. 02Dual coding hypotheses for neural information representationNaoki Masuda and Kazuyuki Aihara1 Jun 2007 | Mathematical Biosciences, Vol. 207, No. 2BIFURCATIONS IN TWO-DIMENSIONAL HINDMARSH–ROSE TYPE MODELSHIGEKI TSUJI, TETSUSHI UETA, HIROSHI KAWAKAMI, HIROSHI FUJII, and KAZUYUKI AIHARA20 November 2011 | International Journal of Bifurcation and Chaos, Vol. 17, No. 03CIRCUIT IMPLEMENTATION AND DYNAMICS OF A TWO-DIMENSIONAL MOSFET NEURON MODELTAKASHI TAKEMOTO, TAKASHI KOHNO, and KAZUYUKI AIHARA20 November 2011 | International Journal of Bifurcation and Chaos, Vol. 17, No. 02Complex phase synchronization in epileptic seizures: Evidence for a devil's staircaseJ. L. Perez Velazquez, L. Garcia Dominguez and R. Wennberg22 January 2007 | Physical Review E, Vol. 75, No. 1Dynamic switching of neural codes in networks with gap junctionsYuichi Katori, Naoki Masuda and Kazuyuki Aihara1 Dec 2006 | Neural Networks, Vol. 19, No. 10Synchronization and propagation of bursts in networks of coupled map neuronsGouhei Tanaka, Borja Ibarz, Miguel A. F. Sanjuan and Kazuyuki Aihara1 Mar 2006 | Chaos: An Interdisciplinary Journal of Nonlinear Science, Vol. 16, No. 1FUNCTIONAL RELEVANCE OF 'EXCITATORY' GABA ACTIONS IN CORTICAL INTERNEURONS: A DYNAMICAL SYSTEMS APPROACHHIROSHI FUJII, KAZUYUKI AIHARA, and ICHIRO TSUDA21 November 2011 | Journal of Integrative Neuroscience, Vol. 03, No. 02Fear-like response induced by intentional gap between neural and body-environment dynamicsS. Yonekura, M. Lungarella and Y. KuniyoshiInterneurons: their cognitive roles - A perspective from dynamical systems viewH. Fujii and I. Tsuda Recommended Vol. 03, No. 02 Metrics History Received 25 June 2003 Accepted 13 December 2003 KeywordsGap junction-coupled systemclass I* neuronsdynamic cell assemblychaotic itinerancyMilnor attractormetachronal wavessynchronizationPDF download

Referência(s)