Variable stress creep in copper
1966; University of Toronto Press; Volume: 14; Issue: 12 Linguagem: Inglês
10.1016/0001-6160(66)90033-2
ISSN1878-0768
Autores Tópico(s)High-Velocity Impact and Material Behavior
ResumoPolycrystalline copper specimens have been tested in variable stress creep and in constant stress creep at room temperature. In variable stress creep tests, the ratio between the stress change Δσ and the creep strain was held constant so that Δσϵ = −λ where λ is a spring constant. In these tests, the dependence of stress change on time t could be represented by a logarithmic relation Δσ ≅ S ln (ct + 1) which agrees with the prediction of Mott's theory of creep. A theoretical analysis indicated that for polycrystalline copper the factor S could be related to the activation volume V by an equation of the form S = −σ0τ0kTV where τ0 is the average shear stress resolved in the shear direction and V the activation volume. The relation between S, the applied stress σ0 and the spring constant λ was investigated in the range of 4.8 ⩽ σ0 ⩽ 29.4 kg/mm20.62 ⩽ gl ⩽ 5 × 103 kg/mm2. It was found that S was a function of both the applied stress and the spring constant. At constant gl the factor S increased linearly with increase in stress. At constant stress level the factor S increased with increase in λ but not linearly. Des échantillons de cuivre polycristallin ont été étudiés en fluage sous tension variable et sous tension constante. Dans les essais sous tension variable, le rapport entre la variation de tension Δσ et la déformation de fluage a été maintenu constant si bien que: Δσϵ = − λ où λ est une constante. Dans ces essais, la dépendance de la variation de tension vis-à-vis du temps pourrait être représentée par une relation logarithmique: δσ ≅ S In (ct + 1) qui est en bon accord avec les prédictions de la théorie du fluage établie par Mott. Une analyse théorique a montré que pour le cuivre polycristallin, le facteur S pourrait être relié au volume d'activation V par une équation de la forme: S = −σ0τ0kTV où τ0 est la tension de cisaillement moyenne rapportée dans la direction de cisaillement et V le volume d'activation. La relation entre S, la tension appliquée σ0 et la constante λ a été examinée dans le domaine 4,8 ≤ σ0 ≤ 29,4 kg/mm20,62 ≤ λ < 5. 103 kg/mm2. L'expérience a montré que S était fonction et de la tension appliquée et de la constante λ. Pour des valeurs constantes de λ, le facteur S augmente linéairement avec le tension. A tension constante, le facteur S augmente également avec λ mais de manière non linéaire. Polykristalline Kupferproben wurden durch Kriechen unter variabler und konstanter Spannung bei Raumtemperatur untersucht. Bei Kriechen unter variabler Spannung wurde das Verhältnis zwischen der Spannungsänderung Δσ und der Kriechdeformation konstant gehalten, so daβ gilt: Δσϵ = − λ wobei λ eine Federkonstante ist. Bei diesen Untersuchungen konnte die Abhängigkeit der Spannungsänderung von der Zeit t durch eine logarithmische Beziehung Δσ ≅ S ln (ct + 1) dargestellt werden, welche mit der Voraussage der Mottschen Kriechtheorie übereinstimmt. Die theoretische Analyse zeigte, daβ für polykristallines Kupfer der Faktor S mit dem Aktivierungs-volumen V durch eine Gleichung der Form S = −σ0τ0kTV in Zusammenhang gebracht werden konnte, wobei τ0 die mittlere Scherspannung in der Scherrichtung ist. Die Relation zwischen S, der Spannung σ0 und der Federkonstanten λ wurde im Gebiet 4.8 ⩽ σ0 ⩽ 29.4 kg/mm20.62 ⩽ λ ⩽ 5 × 103 kg/mm2. untersucht. Es zeigte sich, daβ S eine Funktion der angelegten Spannung und der Federkonstante ist. Bei konstantem λ nahm der Faktor S linear mit zunehmender Spannung zu. Bei konstantem Spannungsniveau nahm der Faktor S mit Zunahme von λ zu, aber nicht linear.
Referência(s)