Artigo Acesso aberto Revisado por pares

On the Assessment of Statistical Significance in Disease-Gene Discovery

1999; Elsevier BV; Volume: 64; Issue: 6 Linguagem: Inglês

10.1086/512072

ISSN

1537-6605

Autores

Lue Ping Zhao, Ross L. Prentice, Fumin Shen, Li Hsu,

Tópico(s)

Genetic Associations and Epidemiology

Resumo

SummaryOne of the major challenges facing genome-scan studies to discover disease genes is the assessment of the genomewide significance. The assessment becomes particularly challenging if the scan involves a large number of markers collected from a relatively small number of meioses. Typically, this assessment has two objectives: to assess genomewide significance under the null hypothesis of no linkage and to evaluate true–positive and false–positive prediction error rates under alternative hypotheses. The distinction between these goals allows one to formulate the problem in the well-established paradigm of statistical hypothesis testing. Within this paradigm, we evaluate the traditional criterion of LOD score 3.0 and a recent suggestion of LOD score 3.6, using the Monte Carlo simulation method. The Monte Carlo experiments show that the type I error varies with the chromosome length, with the number of markers, and also with sample sizes. For a typical setup with 50 informative meioses on 50 markers uniformly distributed on a chromosome of average length (i.e., 150 cM), the use of LOD score 3.0 entails an estimated chromosomewide type I error rate of .00574, leading to a genomewide significance level 1.05. In contrast, the corresponding type I error for LOD score 3.6 is .00191, giving a genomewide significance level of slightly >.05. However, with a larger sample size and a shorter chromosome, a LOD score between 3.0 and 3.6 may be preferred, on the basis of proximity to the targeted type I error. In terms of reliability, these two LOD-score criteria appear not to have appreciable differences. These simulation experiments also identified factors that influence power and reliability, shedding light on the design of genome-scan studies. One of the major challenges facing genome-scan studies to discover disease genes is the assessment of the genomewide significance. The assessment becomes particularly challenging if the scan involves a large number of markers collected from a relatively small number of meioses. Typically, this assessment has two objectives: to assess genomewide significance under the null hypothesis of no linkage and to evaluate true–positive and false–positive prediction error rates under alternative hypotheses. The distinction between these goals allows one to formulate the problem in the well-established paradigm of statistical hypothesis testing. Within this paradigm, we evaluate the traditional criterion of LOD score 3.0 and a recent suggestion of LOD score 3.6, using the Monte Carlo simulation method. The Monte Carlo experiments show that the type I error varies with the chromosome length, with the number of markers, and also with sample sizes. For a typical setup with 50 informative meioses on 50 markers uniformly distributed on a chromosome of average length (i.e., 150 cM), the use of LOD score 3.0 entails an estimated chromosomewide type I error rate of .00574, leading to a genomewide significance level 1.05. In contrast, the corresponding type I error for LOD score 3.6 is .00191, giving a genomewide significance level of slightly >.05. However, with a larger sample size and a shorter chromosome, a LOD score between 3.0 and 3.6 may be preferred, on the basis of proximity to the targeted type I error. In terms of reliability, these two LOD-score criteria appear not to have appreciable differences. These simulation experiments also identified factors that influence power and reliability, shedding light on the design of genome-scan studies.

Referência(s)