LIDA: A Systems-level Architecture for Cognition, Emotion, and Learning
2013; Institute of Electrical and Electronics Engineers; Volume: 6; Issue: 1 Linguagem: Inglês
10.1109/tamd.2013.2277589
ISSN1943-0612
AutoresStan Franklin, Tobias Madl, Sidney K. D’Mello, Javier Snaider,
Tópico(s)Language and cultural evolution
Resumo<?Pub Dtl=""?> We describe a cognitive architecture learning intelligent distribution agent (LIDA) that affords attention, action selection and human-like learning intended for use in controlling cognitive agents that replicate human experiments as well as performing real-world tasks. LIDA combines sophisticated action selection, motivation via emotions, a centrally important attention mechanism, and multimodal instructionalist and selectionist learning. Empirically grounded in cognitive science and cognitive neuroscience, the LIDA architecture employs a variety of modules and processes, each with its own effective representations and algorithms. LIDA has much to say about motivation, emotion, attention, and autonomous learning in cognitive agents. In this paper, we summarize the LIDA model together with its resulting agent architecture, describe its computational implementation, and discuss results of simulations that replicate known experimental data. We also discuss some of LIDA's conceptual modules, propose nonlinear dynamics as a bridge between LIDA's modules and processes and the underlying neuroscience, and point out some of the differences between LIDA and other cognitive architectures. Finally, we discuss how LIDA addresses some of the open issues in cognitive architecture research.
Referência(s)