Vasculopathy in sickle cell disease: Biology, pathophysiology, genetics, translational medicine, and new research directions
2009; Wiley; Volume: 84; Issue: 9 Linguagem: Inglês
10.1002/ajh.21475
ISSN1096-8652
AutoresGregory J. Kato, Robert P. Hebbel, Martin H. Steinberg, Mark T. Gladwin,
Tópico(s)Heme Oxygenase-1 and Carbon Monoxide
ResumoAmerican Journal of HematologyVolume 84, Issue 9 p. 618-625 Meeting ReportFree Access Vasculopathy in sickle cell disease: Biology, pathophysiology, genetics, translational medicine, and new research directions† ‡ Gregory J. Kato, Corresponding Author Gregory J. Kato [email protected] Pulmonary and Vascular Medicine Branch, National Heart, Lung and Blood Institute, Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MarylandSickle Cell Vascular Disease Section, Pulmonary and Vascular Medicine Branch, NHLBI, National Institutes of Health, 10 Center Drive, MSC 1476, Building 10-CRC, Room 5-5140, Bethesda, MD 20892-1476Search for more papers by this authorRobert P. Hebbel, Robert P. Hebbel Vascular Biology Center, Division of Hematology-Oncology-Transplantation, Department of Medicine, University of Minnesota Medical School, Minneapolis, MinnesotaSearch for more papers by this authorMartin H. Steinberg, Martin H. Steinberg Center of Excellence in Sickle Cell Disease, Division of Hematology/Oncology, Boston, MassachusettsSearch for more papers by this authorMark T. Gladwin, Mark T. Gladwin Vascular Medicine Institute, Department of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, PennsylvaniaSearch for more papers by this author Gregory J. Kato, Corresponding Author Gregory J. Kato [email protected] Pulmonary and Vascular Medicine Branch, National Heart, Lung and Blood Institute, Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MarylandSickle Cell Vascular Disease Section, Pulmonary and Vascular Medicine Branch, NHLBI, National Institutes of Health, 10 Center Drive, MSC 1476, Building 10-CRC, Room 5-5140, Bethesda, MD 20892-1476Search for more papers by this authorRobert P. Hebbel, Robert P. Hebbel Vascular Biology Center, Division of Hematology-Oncology-Transplantation, Department of Medicine, University of Minnesota Medical School, Minneapolis, MinnesotaSearch for more papers by this authorMartin H. Steinberg, Martin H. Steinberg Center of Excellence in Sickle Cell Disease, Division of Hematology/Oncology, Boston, MassachusettsSearch for more papers by this authorMark T. Gladwin, Mark T. Gladwin Vascular Medicine Institute, Department of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, PennsylvaniaSearch for more papers by this author First published: 25 August 2009 https://doi.org/10.1002/ajh.21475Citations: 222 † Conflict of interest: G.J.K. receives research support through a Cooperative Research and Development Agreement between the National Institutes of Health and Ikaria-INO Therapeutics. ‡ This article is a US government work and, as such, is in the public domain in the United States of America. AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat References 1 Herrick JB. Peculiar elongated and sickle-shaped red blood corpuscles in a case of severe anemia. Arch Intern Med 1910; 6: 517–521. 10.1001/archinte.1910.00050330050003 Google Scholar 2 Konotey-Ahulu FI. The sickle cell diseases. Clinical manifestations including the "sickle crisis". Arch Intern Med 1974; 133: 611–619. CASPubMedWeb of Science®Google Scholar 3 Yater WM,Hansmann GH. Sickle-cell anemia: A new cause of cor pulmonale: Report of two cases with numerous disseminated occlusions of the small pulmonary arteries. Am J Med Sci 1936; 191: 474–484. Web of Science®Google Scholar 4 Hebbel RP,Schwartz RS,Mohandas N. The adhesive sickle erythrocyte: Cause and consequence of abnormal interactions with endothelium, monocytes/macrophages and model membranes. Clin Haematol 1985; 14: 141–161. CASPubMedWeb of Science®Google Scholar 5 Kaul DK,Fabry ME,Nagel RL. Microvascular sites and characteristics of sickle cell adhesion to vascular endothelium in shear flow conditions: Pathophysiological implications. Proc Natl Acad Sci USA 1989; 86: 3356–3360. 10.1073/pnas.86.9.3356 CASPubMedWeb of Science®Google Scholar 6 Ballas SK. Sickle cell anemia with few painful crises is characterized by decreased red cell deformability and increased number of dense cells. Am J Hematol 1991; 36: 122–130. 10.1002/ajh.2830360211 CASPubMedWeb of Science®Google Scholar 7 Schnog JJ,Lard LR,Rojer RA, et al. New concepts in assessing sickle cell disease severity. Am J Hematol 1998; 58: 61–66. 10.1002/(SICI)1096-8652(199805)58:1 3.0.CO;2-8 CASPubMedWeb of Science®Google Scholar 8 Alexander N,Higgs D,Dover G,Serjeant GR. Are there clinical phenotypes of homozygous sickle cell disease? Br J Haematol 2004; 126: 606–611. 10.1111/j.1365-2141.2004.05025.x PubMedWeb of Science®Google Scholar 9 Gladwin MT,Sachdev V,Jison ML, et al. Pulmonary hypertension as a risk factor for death in patients with sickle cell disease. N Engl J Med 2004; 350: 886–895. 10.1056/NEJMoa035477 CASPubMedWeb of Science®Google Scholar 10 Morris CR,Kato GJ,Poljakovic M, et al. Dysregulated arginine metabolism, hemolysis-associated pulmonary hypertension and mortality in sickle cell disease. JAMA 2005; 294: 81–90. 10.1001/jama.294.1.81 CASPubMedWeb of Science®Google Scholar 11 Reiter CD,Wang X,Tanus-Santos JE, et al. Cell-free hemoglobin limits nitric oxide bioavailability in sickle-cell disease. Nat Med 2002; 8: 1383–1389. 10.1038/nm1202-799 CASPubMedWeb of Science®Google Scholar 12 Kato GJ,McGowan VR,Machado RF, et al. Lactate dehydrogenase as a biomarker of hemolysis-associated nitric oxide resistance, priapism, leg ulceration, pulmonary hypertension and death in patients with sickle cell disease. Blood 2006; 107: 2279–2285. 10.1182/blood-2005-06-2373 CASPubMedWeb of Science®Google Scholar 13 Kato GJ,Gladwin MT,Steinberg MH. Deconstructing sickle cell disease: Reappraisal of the role of hemolysis in the development of clinical subphenotypes. Blood Rev 2007; 21: 37–47. 10.1016/j.blre.2006.07.001 PubMedWeb of Science®Google Scholar 14 Aird WC. Endothelial Biomedicine. New York: Cambridge University Press; 2007. 10.1017/CBO9780511546198 Google Scholar 15 Hebbel RP,Osarogiagbon R,Kaul D. The endothelial biology of sickle cell disease: Inflammation and a chronic vasculopathy. Microcirculation 2004; 11: 129–151. 10.1080/10739680490278402 CASPubMedWeb of Science®Google Scholar 16 Solovey A,Lin Y,Browne P, et al. Circulating activated endothelial cells in sickle cell anemia. N Engl J Med 1997; 337: 1584–1590. 10.1056/NEJM199711273372203 CASPubMedWeb of Science®Google Scholar 17 Nath KA,Grande JP,Haggard JJ, et al. Oxidative stress and induction of heme oxygenase-1 in the kidney in sickle cell disease. Am J Pathol 2001; 158: 893–903. 10.1016/S0002-9440(10)64037-0 CASPubMedWeb of Science®Google Scholar 18 Wood K,Russell J,Hebbel RP,Granger DN. Differential expression of E- and P-selectin in the microvasculature of sickle cell transgenic mice. Microcirculation 2004; 11: 377–385. 10.1080/10739680490437559 CASPubMedWeb of Science®Google Scholar 19 Tomer A,Harker LA,Kasey S,Eckman JR. Thrombogenesis in sickle cell disease. J Lab Clin Med 2001; 137: 398–407. 10.1067/mlc.2001.115450 CASPubMedWeb of Science®Google Scholar 20 Solovey A,Kollander R,Shet A, et al. Endothelial cell expression of tissue factor in sickle mice is augmented by hypoxia/reoxygenation and inhibited by lovastatin. Blood 2004; 104: 840–846. 10.1182/blood-2003-10-3719 CASPubMedWeb of Science®Google Scholar 21 Francis RBJr,Hebbel RP. Hemostasis. In: SH Embury, RP Hebbel, N Mohandas, MH Steinberg, editors. Sickle Cell Disease. New York: Raven Press; 1994. pp 229–310. Google Scholar 22 Belhassen L,Pelle G,Sediame S, et al. Endothelial dysfunction in patients with sickle cell disease is related to selective impairment of shear stress-mediated vasodilation. Blood 2001; 97: 1584–1589. 10.1182/blood.V97.6.1584 CASPubMedWeb of Science®Google Scholar 23 Nath KA,Shah V,Haggard JJ, et al. Mechanisms of vascular instability in a transgenic mouse model of sickle cell disease. Am J Physiol Regul Integr Comp Physiol 2000; 279: R1949–R1955. 10.1152/ajpregu.2000.279.6.R1949 CASPubMedWeb of Science®Google Scholar 24 Nath KA,Katusic ZS,Gladwin MT. The perfusion paradox and vascular instability in sickle cell disease. Microcirculation 2004; 11: 179–193. 10.1080/10739680490278592 CASPubMedWeb of Science®Google Scholar 25 Osarogiagbon UR,Choong S,Belcher JD, et al. Reperfusion injury pathophysiology in sickle transgenic mice. Blood 2000; 96: 314–320. 10.1182/blood.V96.1.314 CASPubMedWeb of Science®Google Scholar 26 Kaul DK,Hebbel RP. Hypoxia/reoxygenation causes inflammatory response in transgenic sickle mice but not in normal mice. J Clin Invest 2000; 106: 411–420. 10.1172/JCI9225 CASPubMedWeb of Science®Google Scholar 27 Hoppe C,Klitz W,Noble J, et al. Distinct HLA associations by stroke subtype in children with sickle cell anemia. Blood 2003; 101: 2865–2869. 10.1182/blood-2002-09-2791 CASPubMedWeb of Science®Google Scholar 28 Sebastiani P,Ramoni MF,Nolan V, et al. Genetic dissection and prognostic modeling of overt stroke in sickle cell anemia. Nat Genet 2005; 37: 435–440. 10.1038/ng1533 CASPubMedWeb of Science®Google Scholar 29 Chang Milbauer L,Wei P,Enenstein J, et al. Genetic endothelial systems biology of sickle stroke risk. Blood 2008; 111: 3872–3879. 10.1182/blood-2007-06-097188 CASPubMedWeb of Science®Google Scholar 30 Ashley-Koch AE,Elliott L,Kail ME, De Castro LM, Jonassaint J, Jackson TL, Price J, Ataga KI, Levesque MC, Weinberg JB, Orringer EP, Collins A, Vance JM, Telen MJ. Identification of genetic polymorphisms associated with risk for pulmonary hypertension in sickle cell disease. Blood 2008; 111: 5721–5726. 10.1182/blood-2007-02-074849 CASPubMedWeb of Science®Google Scholar 31 Eaton WA,Hofrichter J. Hemoglobin S gelation and sickle cell disease. Blood 1987; 70: 1245–1266. 10.1182/blood.V70.5.1245.1245 CASPubMedWeb of Science®Google Scholar 32 Carden DL,Granger DN. Pathophysiology of ischaemia-reperfusion injury. J Pathol 2000; 190: 255–266. 10.1002/(SICI)1096-9896(200002)190:3 3.0.CO;2-6 CASPubMedWeb of Science®Google Scholar 33 Solovey AA,Solovey AN,Harkness J,Hebbel RP. Modulation of endothelial cell activation in sickle cell disease: A pilot study. Blood 2001; 97: 1937–1941. 10.1182/blood.V97.7.1937 CASPubMedWeb of Science®Google Scholar 34 Furchgott RF,Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 1980; 288: 373–376. 10.1038/288373a0 CASPubMedWeb of Science®Google Scholar 35 Ignarro LJ,Byrns RE,Buga GM,Wood KS. Endothelium-derived relaxing factor from pulmonary artery and vein possesses pharmacologic and chemical properties identical to those of nitric oxide radical. Circ Res 1987; 61: 866–879. 10.1161/01.RES.61.6.866 CASPubMedWeb of Science®Google Scholar 36 Palmer RM,Ashton DS,Moncada S. Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature 1988; 333: 664–666. 10.1038/333664a0 CASPubMedWeb of Science®Google Scholar 37 Panza JA,Casino PR,Kilcoyne CM,Quyyumi AA. Role of endothelium-derived nitric oxide in the abnormal endothelium-dependent vascular relaxation of patients with essential hypertension. Circulation 1993; 87: 1468–1474. 10.1161/01.CIR.87.5.1468 CASPubMedWeb of Science®Google Scholar 38 De Caterina R,Libby P,Peng HB, et al. Nitric oxide decreases cytokine-induced endothelial activation. Nitric oxide selectively reduces endothelial expression of adhesion molecules and proinflammatory cytokines. J Clin Invest 1995; 96: 60–68. 10.1172/JCI118074 CASPubMedWeb of Science®Google Scholar 39 Doherty DH,Doyle MP,Curry SR, et al. Rate of reaction with nitric oxide determines the hypertensive effect of cell-free hemoglobin. Nat Biotechnol 1998; 16: 672–676. 10.1038/nbt0798-672 CASPubMedWeb of Science®Google Scholar 40 Schechter AN,Gladwin MT. Hemoglobin and the paracrine and endocrine functions of nitric oxide. N Engl J Med 2003; 348: 1483–1485. 10.1056/NEJMcibr023045 CASPubMedWeb of Science®Google Scholar 41 Reiter CD,Gladwin MT. An emerging role for nitric oxide in sickle cell disease vascular homeostasis and therapy. Curr Opin Hematol 2003; 10: 99–107. 10.1097/00062752-200303000-00001 CASPubMedWeb of Science®Google Scholar 42 Yu B,Raher MJ,Volpato GP, et al. Inhaled nitric oxide enables artificial blood transfusion without hypertension. Circulation 2008; 117: 1982–1990. 10.1161/CIRCULATIONAHA.107.729137 CASPubMedWeb of Science®Google Scholar 43 Gladwin MT,Vichinsky E. Pulmonary complications of sickle cell disease. N Engl J Med 2008; 359: 2254–2265. 10.1056/NEJMra0804411 CASPubMedWeb of Science®Google Scholar 44 Landburg PP,Teerlink T,Muskiet FA, et al. Plasma concentrations of asymmetric dimethylarginine, an endogenous nitric oxide synthase inhibitor, are elevated in sickle cell patients but do not increase further during painful crisis. Am J Hematol 2008; 83: 577–579. 10.1002/ajh.21184 CASPubMedWeb of Science®Google Scholar 45 Landburg PP,Teerlink T,van Beers EJ, et al. Association of asymmetric dimethylarginine with sickle cell disease-related pulmonary hypertension. Haematologica 2008; 93: 1410–1412. 10.3324/haematol.12928 CASPubMedWeb of Science®Google Scholar 46 Kato GJ,Wang Z,Machado RF, et al. Endogenous nitric oxide synthase inhibitors in sickle cell disease: Abnormal levels and correlations with pulmonary hypertension, desaturation, haemolysis, organ dysfunction and death. Br J Haematol 2009; 145: 506–513. 10.1111/j.1365-2141.2009.07658.x CASPubMedWeb of Science®Google Scholar 47 Yuditskaya S,Tumblin A,Hoehn GT, et al. Proteomic identification of altered apolipoprotein patterns in pulmonary hypertension and vasculopathy of sickle cell disease. Blood 2009; 113: 1122–1128. 10.1182/blood-2008-03-142604 CASPubMedWeb of Science®Google Scholar 48 Rother RP,Bell L,Hillmen P,Gladwin MT. The clinical sequelae of intravascular hemolysis and extracellular plasma hemoglobin: A novel mechanism of human disease. JAMA 2005; 293: 1653–1662. 10.1001/jama.293.13.1653 CASPubMedWeb of Science®Google Scholar 49 Raghavachari N,Xu X,Harris A, Villagra J, Logun C, Barb J, Solomon MA, Suffredini AF, Danner RL, Kato G, Munson PJ, Morris SMJr, Gladwin MT. Amplified expression profiling of platelet transcriptome reveals changes in arginine metabolic pathways in patients with sickle cell disease. Circulation 2007; 115: 1551–1562. 10.1161/CIRCULATIONAHA.106.658641 CASPubMedWeb of Science®Google Scholar 50 Villagra J,Shiva S,Hunter LA, et al. Platelet activation in patients with sickle disease, hemolysis-associated pulmonary hypertension and nitric oxide scavenging by cell-free hemoglobin. Blood 2007; 110: 2166–2172. 10.1182/blood-2006-12-061697 CASPubMedWeb of Science®Google Scholar 51 Ataga KI,Moore CG,Hillery CA, et al. Coagulation activation and inflammation in sickle cell disease-associated pulmonary hypertension. Haematologica 2008; 93: 20–26. 10.3324/haematol.11763 CASPubMedWeb of Science®Google Scholar 52 van Beers EJ,Spronk HM,Ten Cate H, et al. No association of the hypercoagulable state with sickle cell disease related pulmonary hypertension. Haematologica 2008; 93: e42–e44. 10.3324/haematol.12632 CASPubMedWeb of Science®Google Scholar 53 Hsu LL,Champion HC,Campbell-Lee SA, et al. Hemolysis in sickle cell mice causes pulmonary hypertension due to global impairment in nitric oxide bioavailability. Blood 2007; 109: 3088–3098. 10.1182/blood-2006-08-039438 CASPubMedWeb of Science®Google Scholar 54 Gramaglia I,Sobolewski P,Meays D, et al. Low nitric oxide bioavailability contributes to the genesis of experimental cerebral malaria. Nat Med 2006; 12: 1417–1422. 10.1038/nm1499 CASPubMedWeb of Science®Google Scholar 55 Hillmen P,Muus P,Duhrsen U, et al. Effect of the complement inhibitor eculizumab on thromboembolism in patients with paroxysmal nocturnal hemoglobinuria. Blood 2007; 110: 4123–4128. 10.1182/blood-2007-06-095646 CASPubMedWeb of Science®Google Scholar 56 Yeo TW,Lampah DA,Gitawati R, et al. Impaired nitric oxide bioavailability and L-arginine reversible endothelial dysfunction in adults with falciparum malaria. J Exp Med 2007; 204: 2693–2704. 10.1084/jem.20070819 CASPubMedWeb of Science®Google Scholar 57 Ataga KI,Moore CG,Jones S, et al. Pulmonary hypertension in patients with sickle cell disease: A longitudinal study. Br J Haematol 2006; 134: 109–115. 10.1111/j.1365-2141.2006.06110.x PubMedWeb of Science®Google Scholar 58 De Castro LM,Jonassaint JC,Graham FL, et al. Pulmonary hypertension associated with sickle cell disease: Clinical and laboratory endpoints and disease outcomes. Am J Hematol 2008; 83: 19–25. 10.1002/ajh.21058 CASPubMedWeb of Science®Google Scholar 59 Castro O,Hoque M,Brown BD. Pulmonary hypertension in sickle cell disease: Cardiac catheterization results and survival. Blood 2003; 101: 1257–1261. 10.1182/blood-2002-03-0948 CASPubMedWeb of Science®Google Scholar 60 Ataga KI,Sood N,De GG, et al. Pulmonary hypertension in sickle cell disease. Am J Med 2004; 117: 665–669. 10.1016/j.amjmed.2004.03.034 PubMedWeb of Science®Google Scholar 61 Machado RF,Anthi A,Steinberg MH, et al. N-terminal pro-brain natriuretic peptide levels and risk of death in sickle cell disease. JAMA 2006; 296: 310–318. 10.1001/jama.296.3.310 CASPubMedWeb of Science®Google Scholar 62 Vichinsky EP. Pulmonary hypertension in sickle cell disease. N Engl J Med 2004; 350: 857–859. 10.1056/NEJMp038250 CASPubMedWeb of Science®Google Scholar 63 Machado RF,Gladwin MT. Chronic sickle cell lung disease: New insights into the diagnosis, pathogenesis and treatment of pulmonary hypertension. Br J Haematol 2005; 129: 449–464. 10.1111/j.1365-2141.2005.05432.x CASPubMedWeb of Science®Google Scholar 64 McQuillan BM,Picard MH,Leavitt M,Weyman AE. Clinical correlates and reference intervals for pulmonary artery systolic pressure among echocardiographically normal subjects. Circulation 2001; 104: 2797–2802. 10.1161/hc4801.100076 CASPubMedWeb of Science®Google Scholar 65 Onyekwere OC,Campbell A,Teshome M, et al. Pulmonary hypertension in children and adolescents with sickle cell disease. Pediatr Cardiol 2008; 29: 309–312. 10.1007/s00246-007-9018-x CASPubMedWeb of Science®Google Scholar 66 Kato GJ,Onyekwere OC,Gladwin MT. Pulmonary hypertension in sickle cell disease: Relevance to children. Pediatr Hematol Oncol 2007; 24: 159–170. 10.1080/08880010601185892 PubMedWeb of Science®Google Scholar 67 Minniti CP,Sable C,Campbell A, et al. Elevated tricuspid regurgitant jet velocity in children and adolescents with sickle cell disease: Association with hemolysis and hemoglobin oxygen desaturation. Haematologica 2009; 94: 340–347. 10.3324/haematol.13812 CASPubMedWeb of Science®Google Scholar 68 Sedrak A,Rao SP,Miller ST, et al. A prospective appraisal of pulmonary hypertension in children with sickle cell disease. J Pediatr Hematol Oncol 2009; 31: 97–100. 10.1097/MPH.0b013e31818e5343 PubMedWeb of Science®Google Scholar 69 Pashankar FD,Carbonella J,Bazzy-Asaad A,Friedman A. Longitudinal follow up of elevated pulmonary artery pressures in children with sickle cell disease. Br J Haematol 2009; 144: 736–741. 10.1111/j.1365-2141.2008.07501.x PubMedWeb of Science®Google Scholar 70 Lee MT,Rosenzweig EB,Cairo MS. Pulmonary hypertension in sickle cell disease. Clin Adv Hematol Oncol 2007; 5: 645–653, 585. PubMedGoogle Scholar 71 Ambrusko SJ,Gunawardena S,Sakara A, et al. Elevation of tricuspid regurgitant jet velocity, a marker for pulmonary hypertension in children with sickle cell disease. Pediatr Blood Cancer 2006; 47: 907–913. 10.1002/pbc.20791 PubMedWeb of Science®Google Scholar 72 Hagar RW,Michlitsch JG,Gardner J, et al. Clinical differences between children and adults with pulmonary hypertension and sickle cell disease. Br J Haematol 2008; 140: 104–112. 10.1111/j.1365-2141.2007.06822.x PubMedWeb of Science®Google Scholar 73 Liem RI,Nevin MA,Prestridge A, et al. Tricuspid regurgitant jet velocity elevation and its relationship to lung function in pediatric sickle cell disease. Pediatr Pulmonol 2009; 44: 281–289. 10.1002/ppul.20996 PubMedWeb of Science®Google Scholar 74 Adams RJ,McKie VC,Hsu L, et al. Prevention of a first stroke by transfusions in children with sickle cell anemia and abnormal results on transcranial Doppler ultrasonography. N Engl J Med 1998; 339: 5–11. 10.1056/NEJM199807023390102 CASPubMedWeb of Science®Google Scholar 75 Olnes M,Chi A,Haney C, May R, Minniti C, Taylor J 6th, Kato GJ. Improvement in hemolysis and pulmonary arterial systolic pressure in adult patients with sickle cell disease during treatment with hydroxyurea. Am J Hematol, in press. Google Scholar 76 Kato GJ,Gladwin MT. Evolution of novel small-molecule therapeutics targeting sickle cell vasculopathy. JAMA 2008; 300: 2638–2646. 10.1001/jama.2008.598 CASPubMedWeb of Science®Google Scholar 77 Kato GJ. Novel small molecule therapeutics for sickle cell disease: Nitric oxide, carbon monoxide, nitrite, and apolipoprotein a-I. Hematology Am Soc Hematol Educ Program 2008; 2008: 186–192. 10.1182/asheducation-2008.1.186 Google Scholar 78 Klings ES,Anton Bland D,Rosenman D, et al. Pulmonary arterial hypertension and left-sided heart disease in sickle cell disease: Clinical characteristics and association with soluble adhesion molecule expression. Am J Hematol 2008; 83: 547–553. 10.1002/ajh.21187 CASPubMedWeb of Science®Google Scholar 79 Caldas MC,Meira ZA,Barbosa MM. Evaluation of 107 patients with sickle cell anemia through tissue Doppler and myocardial performance index. J Am Soc Echocardiogr 2008; 21: 1163–1167. 10.1016/j.echo.2007.06.001 PubMedWeb of Science®Google Scholar 80 Kanadasi M,Akpinar O,Cayli M, et al. Frequency of diastolic dysfunction in patients with sickle cell anaemia: A tissue Doppler imaging study. Acta Cardiol 2005; 60: 471–476. 10.2143/AC.60.5.2004966 PubMedWeb of Science®Google Scholar 81 Lewis JF,Maron BJ,Castro O,Moosa YA. Left ventricular diastolic filling abnormalities identified by Doppler echocardiography in asymptomatic patients with sickle cell anemia. J Am Coll Cardiol 1991; 17: 1473–1478. 10.1016/0735-1097(91)90634-L CASPubMedWeb of Science®Google Scholar 82 Sachdev V,Machado RF,Shizukuda Y, et al. Diastolic dysfunction is an independent risk factor for death in patients with sickle cell disease. J Am Coll Cardiol 2007; 49: 472–479. 10.1016/j.jacc.2006.09.038 PubMedWeb of Science®Google Scholar 83 Anthi A,Machado RF,Jison ML, et al. Hemodynamic and functional assessment of patients with sickle cell disease and pulmonary hypertension. Am J Respir Crit Care Med 2007; 175: 1272–1279. 10.1164/rccm.200610-1498OC PubMedWeb of Science®Google Scholar 84 Machado RF,Mack AK,Martyr S, et al. Severity of pulmonary hypertension during vaso-occlusive pain crisis and exercise in patients with sickle cell disease. Br J Haematol 2007; 136: 319–325. 10.1111/j.1365-2141.2006.06417.x PubMedWeb of Science®Google Scholar 85 Mekontso Dessap A,Leon R,Habibi A, et al. Pulmonary hypertension and cor pulmonale during severe acute chest syndrome in sickle cell disease. Am J Respir Crit Care Med 2008; 177: 646–653. 10.1164/rccm.200710-1606OC CASPubMedWeb of Science®Google Scholar 86 Ohene-Frempong K,Weiner SJ,Sleeper LA, et al. Cerebrovascular accidents in sickle cell disease: Rates and risk factors. Blood 1998; 91: 288–294. CASPubMedWeb of Science®Google Scholar 87 Rothman SM,Fulling KH,Nelson JS. Sickle cell anemia and central nervous system infarction: A neuropathological study. Ann Neurol 1986; 20: 684–690. 10.1002/ana.410200606 PubMedWeb of Science®Google Scholar 88 Haque AK,Gokhale S,Rampy BA, et al. Pulmonary hypertension in sickle cell hemoglobinopathy: A clinicopathologic study of 20 cases. Hum Pathol 2002; 33: 1037–1043. 10.1053/hupa.2002.128059 PubMedWeb of Science®Google Scholar 89 Kato GJ,Hsieh M,Machado R, et al. Cerebrovascular disease associated with sickle cell pulmonary hypertension. Am J Hematol 2006; 81: 503–510. 10.1002/ajh.20642 CASPubMedWeb of Science®Google Scholar 90 Bernaudin F,Verlhac S,Chevret S, et al. G6PD deficiency, absence of alpha-thalassemia, and hemolytic rate at baseline are significant independent risk factors for abnormally high cerebral velocities in patients with sickle cell anemia. Blood 2008; 112: 4314–4317. 10.1182/blood-2008-03-143891 CASPubMedWeb of Science®Google Scholar 91 Hsu LL,Miller ST,Wright E, et al. Alpha thalassemia is associated with decreased risk of abnormal transcranial Doppler ultrasonography in children with sickle cell anemia. J Pediatr Hematol Oncol 2003; 25: 622–628. 10.1097/00043426-200308000-00007 PubMedWeb of Science®Google Scholar 92 Akgul F,Yalcin F,Seyfeli E, et al. Pulmonary hypertension in sickle-cell disease: Comorbidities and echocardiographic findings. Acta Haematol 2007; 118: 53–60. 10.1159/000102588 PubMedWeb of Science®Google Scholar 93 Nolan VG,Adewoye A,Baldwin C, et al. Sickle cell leg ulcers: Associations with haemolysis and SNPs in Klotho, TEK and genes of the TGF-beta/BMP pathway. Br J Haematol 2006; 133: 570–578. 10.1111/j.1365-2141.2006.06074.x CASPubMedWeb of Science®Google Scholar 94 Nolan VG,Wyszynski DF,Farrer LA,Steinberg MH. Hemolysis-associated priapism in sickle cell disease. Blood 2005; 106: 3264–3267. 10.1182/blood-2005-04-1594 CASPubMedWeb of Science®Google Scholar 95 Burnett AL,Bivalacqua TJ,Champion HC,Musicki B. Long-term oral phosphodiesterase 5 inhibitor therapy alleviates recurrent priapism. Urology 2006; 67: 1043–1048. 10.1016/j.urology.2005.11.045 PubMedWeb of Science®Google Scholar 96 Burnett AL,Bivalacqua TJ,Champion HC,Musicki B. Feasibility of the use of phosphodiesterase type 5 inhibitors in a pharmacologic prevention program for recurrent priapism. J Sex Med 2006; 3: 1077–1084. 10.1111/j.1743-6109.2006.00333.x CASPubMedWeb of Science®Google Scholar 97 Champion HC,Bivalacqua TJ,Takimoto E, et al. Phosphodiesterase-5A dysregulation in penile erectile tissue is a mechanism of priapism. Proc Natl Acad Sci USA 2005; 102: 1661–1666. 10.1073/pnas.0407183102 CASPubMedWeb of Science®Google Scholar 98 Bialecki ES,Bridges KR. Sildenafil relieves priapism in patients with sickle cell disease. Am J Med 2002; 113: 252. 10.1016/S0002-9343(02)01165-8 PubMedWeb of Science®Google Scholar 99 Hagar RW,Michlitsch JG,Gardner J, et al. Clinical differences between children and adults with pulmonary hypertension and sickle cell disease. Br J Haematol 2008; 140: 104–112. 10.1111/j.1365-2141.2007.06822.x PubMedWeb of Science®Google Scholar 100 Brittain JE,Parise LV. The alpha4beta1 integrin in sickle cell disease. Transfus Clin Biol 2008; 15: 19–22. 10.1016/j.tracli.2008.03.013 CASPubMedWeb of Science®Google Scholar 101 Canalli AA,Franco-Penteado CF,Saad ST, et al. Increased adhesive properties of neutrophils in sickle cell disease may be reversed by pharmacological nitric oxide donation. Haematologica 2008; 93: 605–609. 10.3324/haematol.12119 CASPubMedWeb of Science®Google Scholar 102 Haynes JJr,Obiako B,Hester RB, et al. Hydroxyurea attenuates activated neutrophil-mediated sickle erythrocyte membrane phosphatidylserine exposure and adhesion to pulmonary vascular endothelium. Am J Physiol Heart Circ Physiol 2008; 294: H379–H385. 10.1152/ajpheart.01068.2007 CASPubMedWeb of Science®Google Scholar 103 Chang J,Shi PA,Chiang EY,Frenette PS. Intravenous immunoglobulins reverse acute vaso-occlusive crises in sickle cell mice through rapid inhibition of neutrophil adhesion. Blood 2008; 111: 915–923. 10.1182/blood-2007-04-084061 CASPubMedWeb of Science®Google Scholar 104 Kasschau MR,Barabino GA,Bridges KR,Golan DE. Adhesion of sickle neutrophils and erythrocytes to fibronectin. Blood 1996; 87: 771–780. CASPubMedWeb of Science®Google Scholar 105 Boghossian SH,Nash G,Dormandy J,Bevan DH. Abnormal neutrophil adhesion in sickle cell anaemia and crisis: Relationship to blood rheology. Br J Haematol 1991; 78: 437–441. 10.1111/j.1365-2141.1991.tb04461.x CASPubMedWeb of Science®Google Scholar 106 Inwald DP,Kirkham FJ,Peters MJ, et al. Platelet and leucocyte activation in childhood sickle cell disease: Association with nocturnal hypoxaemia. Br J Haematol 2000; 111: 474–481. 10.1111/j.1365-2141.2000.02353.x CASPubMedWeb of Science®Google Scholar 107 Brittain JE,Knoll CM,Ataga KI, et al. Fibronectin bridges monocytes and reticulocytes via integrin alpha4beta1. Br J Haematol 2008; 141: 872–881. 10.1111/j.1365-2141.2008.07056.x CASPubMedWeb of Science®Google Scholar 108 Belcher JD,Marker PH,Weber JP, et al. Activated monocytes in sickle cell disease: Potential role in the activation of vascular endothelium and vaso-occlusion. Blood 2000; 96: 2451–2459. 10.1182/blood.V96.7.2451 CASPubMedWeb of Science®Google Scholar 109 Lee SP,Ataga KI,Orringer EP, et al. Biologically active CD40 ligand is elevated in sickle cell anemia: Potential role for platelet-mediated inflammation. Arterioscler Thromb Vasc Biol 2006; 26: 1626–1631. 10.1161/01.ATV.0000220374.00602.a2 CASPubMedWeb of Science®Google Scholar 110 Wun T,Paglieroni T,Tablin F, et al. Platelet activation and platelet-erythrocyte aggregates in patients with sickle cell anemia. J Lab Clin Med 1997; 129: 507–516. 10.1016/S0022-2143(97)90005-6 CASPubMedWeb of Science®Google Scholar 111 Nolan VG,Baldwin C,Ma Q, et al. Association of single nucleotide polymorphisms in klotho with priapism in sickle cell anaemia. Br J Haematol 2005; 128: 266–272. 10.1111/j.1365-2141.2004.05295.x CASPubMedWeb of Science®Google Scholar 112 Elliott L,Ashley-Koch AE,De Castro L, et al. Genetic polymorphisms associated with priapism in sickle cell disease. Br J Haematol 2007; 137: 262–267. 10.1111/j.1365-2141.2007.06560.x CASPubMedWeb of Science®Google Scholar 113 Adewoye AH,Nolan VG,Ma Q, et al. Association of polymorphisms of IGF1R and genes in the transforming growth factor- beta /bone morphogenetic protein pathway with bacteremia in sickle cell anemia. Clin Infect Dis 2006; 43: 593–598. 10.1086/506356 CASPubMedWeb of Science®Google Scholar 114 Nagel RL,Lawrence C. The distinct pathobiology of sickle cell-hemoglobin C disease. Therapeutic implications. Hematol Oncol Clin North Am 1991; 5: 433–451. CASPubMedWeb of Science®Google Scholar 115 Serjeant GR. Fetal haemoglobin in homozygous sickle cell disease. Clin Haematol 1975; 4: 109–122. CASPubMedWeb of Science®Google Scholar 116 Atweh GF,Forget BG. Clinical and molecular correlations in the sickle/beta+-thalassemia syndrome. Am J Hematol 1987; 24: 31–36. 10.1002/ajh.2830240105 CASPubMedWeb of Science®Google Scholar 117 De Ceulaer K,Higgs DR,Weatherall DJ, et al. alpha-Thalassemia reduces the hemolytic rate in homozygous sickle-cell disease. N Engl J Med 1983; 309: 189–190. 10.1056/NEJM198307213090320 CASPubMedWeb of Science®Google Scholar 118 Embury SH,Dozy AM,Miller J, et al. Concurrent sickle-cell anemia and alpha-thalassemia: Effect on severity of anemia. N Engl J Med 1982; 306: 270–274. 10.1056/NEJM198202043060504 CASPubMedWeb of Science®Google Scholar 119 Ataga KI,Smith WR,De Castro LM, et al. Efficacy and safety of the Gardos channel blocker, senicapoc (ICA-17043), in patients with sickle cell anemia. Blood 2008; 111: 3991–3997. 10.1182/blood-2007-08-110098 CASPubMedWeb of Science®Google Scholar 120 Schaer DJ,Alayash AI,Buehler PW. Gating the radical hemoglobin to macrophages: The anti-inflammatory role of CD163, a scavenger receptor. Antioxid Redox Signal 2007; 9: 991–999. 10.1089/ars.2007.1576 CASPubMedWeb of Science®Google Scholar 121 Kristiansen M,Graversen JH,Jacobsen C, et al. Identification of the haemoglobin scavenger receptor. Nature 2001; 409: 198–201. 10.1038/35051594 CASPubMedWeb of Science®Google Scholar 122 Lanaro C,Franco-Penteado CF,Albuqueque DM, et al. Altered levels of cytokines and inflammatory mediators in plasma and leukocytes of sickle cell anemia patients and effects of hydroxyurea therapy. J Leukoc Biol 2009; 85: 235–242. 10.1189/jlb.0708445 CASPubMedWeb of Science®Google Scholar 123 Belcher JD,Mahaseth H,Welch TE, et al. Heme oxygenase-1 is a modulator of inflammation and vaso-occlusion in transgenic sickle mice. J Clin Invest 2006; 116: 808–816. 10.1172/JCI26857 CASPubMedWeb of Science®Google Scholar 124 Ryter SW,Otterbein LE,Morse D,Choi AM. Heme oxygenase/carbon monoxide signaling pathways: Regulation and functional significance. Mol Cell Biochem 2002; 234/235: 249–263. 10.1023/A:1015957026924 CASPubMedWeb of Science®Google Scholar 125 Walter PB,Fung EB,Killilea DW, et al. Oxidative stress and inflammation in iron-overloaded patients with beta-thalassaemia or sickle cell disease. Br J Haematol 2006; 135: 254–263. 10.1111/j.1365-2141.2006.06277.x CASPubMedWeb of Science®Google Scholar 126 Hebbel RP. Auto-oxidation and a membrane-associated 'Fenton reagent': A possible explanation for development of membrane lesions in sickle erythrocytes. Clin Haematol 1985; 14: 129–140. CASPubMedWeb of Science®Google Scholar 127 Repka T,Hebbel RP. Hydroxyl radical formation by sickle erythrocyte membranes: Role of pathologic iron deposits and cytoplasmic reducing agents. Blood 1991; 78: 2753–2758. 10.1182/blood.V78.10.2753.2753 CASPubMedWeb of Science®Google Scholar 128 Kaul DK,Liu XD,Choong S, et al. Anti-inflammatory therapy ameliorates leukocyte adhesion and microvascular flow abnormalities in transgenic sickle mice. Am J Physiol Heart Circ Physiol 2004; 287: H293–H301. 10.1152/ajpheart.01150.2003 CASPubMedWeb of Science®Google Scholar 129 Aslan M,Ryan TM,Adler B, et al. Oxygen radical inhibition of nitric oxide-dependent vascular function in sickle cell disease. Proc Natl Acad Sci USA 2001; 98: 15215–15220. 10.1073/pnas.221292098 CASPubMedWeb of Science®Google Scholar 130 Aslan M,Freeman BA. Oxidant-mediated impairment of nitric oxide signaling in sickle cell disease--mechanisms and consequences. Cell Mol Biol (Noisy-le-grand) 2004; 50: 95–105. CASPubMedWeb of Science®Google Scholar 131 Kelley EE,Batthyany CI,Hundley NJ, et al. Nitro-oleic acid, a novel and irreversible inhibitor of xanthine oxidoreductase. J Biol Chem 2008; 283: 36176–36184. 10.1074/jbc.M802402200 CASPubMedWeb of Science®Google Scholar 132 Wood KC,Hebbel RP,Granger DN. Endothelial cell NADPH oxidase mediates the cerebral microvascular dysfunction in sickle cell transgenic mice. FASEB J 2005; 19: 989–991. 10.1096/fj.04-3218fje CASPubMedWeb of Science®Google Scholar 133 Xia Y,Dawson VL,Dawson TM, et al. Nitric oxide synthase generates superoxide and nitric oxide in arginine-depleted cells leading to peroxynitrite-mediated cellular injury. Proc Natl Acad Sci USA 1996; 93: 6770–6774. 10.1073/pnas.93.13.6770 CASPubMedWeb of Science®Google Scholar 134 Heinzel B,John M,Klatt P, et al. Ca2+/calmodulin-dependent formation of hydrogen peroxide by brain nitric oxide synthase. Biochem J 1992; 281(Pt 3): 627–630. 10.1042/bj2810627 CASPubMedWeb of Science®Google Scholar 135 Schnog JJ,Jager EH,van der Dijs FP, et al. Evidence for a metabolic shift of arginine metabolism in sickle cell disease. Ann Hematol 2004; 83: 371–375. 10.1007/s00277-004-0856-9 CASPubMedWeb of Science®Google Scholar 136 Lopez BL,Kreshak AA,Morris CR, et al. L-arginine levels are diminished in adult acute vaso-occlusive sickle cell crisis in the emergency department. Br J Haematol 2003; 120: 532–534. 10.1046/j.1365-2141.2003.04109.x CASPubMedWeb of Science®Google Scholar 137 Waugh WH,Knupp CL,Liles DK. Undetectable plasma L-arginine level before visible hemolysis in thrombotic thrombocytopenic purpura. Am J Hematol 1999; 61: 216. 10.1002/(SICI)1096-8652(199907)61:3 3.0.CO;2-E CASPubMedWeb of Science®Google Scholar 138 Azizi E,Dror Y,Wallis K. Arginase activity in erythrocytes of healthy and ill children. Clin Chim Acta 1970; 28: 391–396. 10.1016/0009-8981(70)90063-X CASPubMedWeb of Science®Google Scholar 139 Morris CR,Morris SMJr,Hagar W, et al. Arginine therapy: A new treatment for pulmonary hypertension in sickle cell disease? Am J Respir Crit Care Med 2003; 168: 63–69. 10.1164/rccm.200208-967OC PubMedWeb of Science®Google Scholar 140 Morris CR,Vichinsky EP,Van WJ, et al. Hydroxyurea and arginine therapy: Impact on nitric oxide production in sickle cell disease. J Pediatr Hematol Oncol 2003; 25: 629–634. 10.1097/00043426-200308000-00008 PubMedWeb of Science®Google Scholar 141 Moens AL,Kass DA. Tetrahydrobiopterin and cardiovascular disease. Arterioscler Thromb Vasc Biol 2006; 26: 2439–2444. 10.1161/01.ATV.0000243924.00970.cb CASPubMedWeb of Science®Google Scholar 142 Gorren AC,Mayer B. Tetrahydrobiopterin in nitric oxide synthesis: A novel biological role for pteridines. Curr Drug Metab 2002; 3: 133–157. 10.2174/1389200024605154 CASPubMedWeb of Science®Google Scholar 143 Katusic ZS,d'Uscio LV,Nath KA. Vascular protection by tetrahydrobiopterin: Progress and therapeutic prospects. Trends Pharmacol Sci 2009; 30: 48–54. 10.1016/j.tips.2008.10.003 CASPubMedWeb of Science®Google Scholar 144 Morris CR,Suh JH,Hagar W, et al. Erythrocyte glutamine depletion, altered redox environment, and pulmonary hypertension in sickle cell disease. Blood 2008; 111: 402–410. 10.1182/blood-2007-04-081703 CASPubMedWeb of Science®Google Scholar 145 El Rassi F,Cappellini MD,Inati A,Taher A. Beta-thalassemia intermedia: An overview. Pediatr Ann 2008; 37: 322–328. Google Scholar Citing Literature Volume84, Issue9September 2009Pages 618-625 ReferencesRelatedInformation
Referência(s)