Artigo Revisado por pares

The Structure of Generalized Lorenz-Mie Theory for Elliptical Infinite Cylinders

1999; Wiley; Volume: 16; Issue: 1 Linguagem: Inglês

10.1002/(sici)1521-4117(199905)16

ISSN

1521-4117

Autores

G. Gouesbet, Loï‹c M‚Šéès, Gérard Gréhan, Kuan Fang Ren,

Tópico(s)

Computational Physics and Python Applications

Resumo

Particle & Particle Systems CharacterizationVolume 16, Issue 1 p. 3-10 Article The Structure of Generalized Lorenz-Mie Theory for Elliptical Infinite Cylinders Gérard Gouesbet, Gérard Gouesbet Prof. G. Gouesbet , L. Mees , Dr. G. Gréhan , Dr. K. F. Ren , CORIA (COmplexe de Recherche Interprofessionnel en Aérothermochimie), Unité Mixte de Recherche (UMR) 6614 du Centre National de la Recherche Scientifique (CNRS), LESP (Laboratoire d'Energétique des Systèmes et Procédés), Université de Rouen et Institut National des Sciences Appliquées de Rouen, B.P. 08, 76131 Mont Sait Aignan Cedex (France).Search for more papers by this authorLoïc Mees, Loïc Mees Prof. G. Gouesbet , L. Mees , Dr. G. Gréhan , Dr. K. F. Ren , CORIA (COmplexe de Recherche Interprofessionnel en Aérothermochimie), Unité Mixte de Recherche (UMR) 6614 du Centre National de la Recherche Scientifique (CNRS), LESP (Laboratoire d'Energétique des Systèmes et Procédés), Université de Rouen et Institut National des Sciences Appliquées de Rouen, B.P. 08, 76131 Mont Sait Aignan Cedex (France).Search for more papers by this authorGérard Gréhan, Gérard Gréhan Prof. G. Gouesbet , L. Mees , Dr. G. Gréhan , Dr. K. F. Ren , CORIA (COmplexe de Recherche Interprofessionnel en Aérothermochimie), Unité Mixte de Recherche (UMR) 6614 du Centre National de la Recherche Scientifique (CNRS), LESP (Laboratoire d'Energétique des Systèmes et Procédés), Université de Rouen et Institut National des Sciences Appliquées de Rouen, B.P. 08, 76131 Mont Sait Aignan Cedex (France).Search for more papers by this authorKuan F. Ren, Kuan F. RenSearch for more papers by this author Gérard Gouesbet, Gérard Gouesbet Prof. G. Gouesbet , L. Mees , Dr. G. Gréhan , Dr. K. F. Ren , CORIA (COmplexe de Recherche Interprofessionnel en Aérothermochimie), Unité Mixte de Recherche (UMR) 6614 du Centre National de la Recherche Scientifique (CNRS), LESP (Laboratoire d'Energétique des Systèmes et Procédés), Université de Rouen et Institut National des Sciences Appliquées de Rouen, B.P. 08, 76131 Mont Sait Aignan Cedex (France).Search for more papers by this authorLoïc Mees, Loïc Mees Prof. G. Gouesbet , L. Mees , Dr. G. Gréhan , Dr. K. F. Ren , CORIA (COmplexe de Recherche Interprofessionnel en Aérothermochimie), Unité Mixte de Recherche (UMR) 6614 du Centre National de la Recherche Scientifique (CNRS), LESP (Laboratoire d'Energétique des Systèmes et Procédés), Université de Rouen et Institut National des Sciences Appliquées de Rouen, B.P. 08, 76131 Mont Sait Aignan Cedex (France).Search for more papers by this authorGérard Gréhan, Gérard Gréhan Prof. G. Gouesbet , L. Mees , Dr. G. Gréhan , Dr. K. F. Ren , CORIA (COmplexe de Recherche Interprofessionnel en Aérothermochimie), Unité Mixte de Recherche (UMR) 6614 du Centre National de la Recherche Scientifique (CNRS), LESP (Laboratoire d'Energétique des Systèmes et Procédés), Université de Rouen et Institut National des Sciences Appliquées de Rouen, B.P. 08, 76131 Mont Sait Aignan Cedex (France).Search for more papers by this authorKuan F. Ren, Kuan F. RenSearch for more papers by this author First published: 21 July 1999 https://doi.org/10.1002/(SICI)1521-4117(199905)16:1 3.0.CO;2-7Citations: 12AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract Generalized Lorenz-Mie theory (GLMT) for elliptical cylinders is concisely described. Rather than insisting on technicalities which will appear elsewhere, this paper provides a guide allowing one to gain a bird view over the structure of the theory. As a by-product, the structure of the GLMT for circular cylinders is revisited. References 1 G. Gouesbet, B. Maheu, G. Gréhan: Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation. J. Opt. Soc. Am. A 5 (1988) 1427–1443. 10.1364/JOSAA.5.001427 CASWeb of Science®Google Scholar 2 G. Gouesbet: Generalized Lorenz-Mie theory and applications. Part. Part. Syst. Charact. 11 (1994) 22–34. 10.1002/ppsc.19940110105 Web of Science®Google Scholar 3 F. Onofri, G. Gréhan, G. Gouesbet: Electromagnetic scattering from a multilayered sphere located in an arbitrary beam. Appl. Opt. 34 (1995) 7113–7124. 10.1364/AO.34.007113 CASPubMedWeb of Science®Google Scholar 4 Z. S. Wu, L. X. Guo, K. F. Ren, G. Gouesbet, G. Gréhan: Improved algorithms for electromagnetic scattering of plane waves and shaped beams by multilayered spheres. Appl. Opt. 36 (1997) 5188–5198. 10.1364/AO.36.005188 CASPubMedWeb of Science®Google Scholar 5 H. Mignon, G. Gréhan, G. Gouesbet, T. H. Hu, C. Tropea: Measurement of cylindrical particles with phase-Doppler anemometry. Appl. Opt. 35 (1996) 5180–5190. 10.1364/AO.35.005180 PubMedWeb of Science®Google Scholar 6 N. Gauchet, T. Girasole, K. F. Ren, G. Gréhan, G. Gouesbet: Application of generalized Lorenz-Mie theory for cylinders to cylindrical characterization by phase-Doppler anemometry. Opt. Diagnost Eng. 2 (1997) 1–10. Google Scholar 7 X. Han, K. F. Ren, Z. Wu, F. Corbin, G. Gouesbet, G. Gréhan: Characterization of initial disturbance in liquid jet by rainbow sizing. Appl. Opt. 37 (1998) 8498–8503. 10.1364/AO.37.008498 CASPubMedWeb of Science®Google Scholar 8 J. A. Lock, C. L. Adler, B. R. Stone, P. D. Zajak: Amplification of high-order rainbows of a cylinder with an elliptical cross-section. Appl. Opt. 37 (1998) 1527–1533. 10.1364/AO.37.001527 CASPubMedWeb of Science®Google Scholar 9 S. Lange, G. Schweiger: Structural resonances in the total Raman- and fluorescence-scattering cross section: concentration-profile dependence. J. Opt. Am. B 13 (1996) 1864–1872. 10.1364/JOSAB.13.001864 CASWeb of Science®Google Scholar 10 F. Roddier: Distributions et tranformation de Fourier McGraw-Hill, Paris 1992. Web of Science®Google Scholar 11 G. Gouesbet: Theory of distributions and its application to light scattering. Part. Part. Syst. Charact., 16 (1999) in press. 10.1002/(SICI)1521-4117(199908)16:4 3.0.CO;2-X CASWeb of Science®Google Scholar 12 G. Gouesbet, L. Mees, G. Gréhan: Partial wave description of shaped beams in elliptical cylinder coordinates. To be published in J. Opt. Soc. Am. 15, (1998) 3028–3038. 10.1364/JOSAA.15.003028 Web of Science®Google Scholar 13 C. Yeh: The diffraction of waves by a penetrable ribbon. J. Math. Phys. 4 (1963) 65–71. 10.1063/1.1703890 Web of Science®Google Scholar 14 C. Yeh: Backscattering cross section of a dielectric elliptical cylinder. J. Opt. Soc Am. A. 55 (1965) 309–314. 10.1364/JOSA.55.000309 Web of Science®Google Scholar 15 P. M. Morse, H. Feshbach: Methods of theoretical physics. Part. I. McGraw-Hill, New York 1953. Google Scholar 16 T. J. Bromwich: Electromagnetic waves. Philos. Mag. 38 (1919) 143–164. 10.1080/14786440708635935 Web of Science®Google Scholar 17 F. E. Borgnis: Electromagnetische Eigenschwingungen dielektrischer Raüme. Ann. Phys. 35 (1939) 359–384. 10.1002/andp.19394270408 Web of Science®Google Scholar 18 G. Gouesbet, G. Gréhan, B. Maheu, K. F. Ren: Electromagnetic scattering of shaped beams (generalized Lorenz-Mie theory. Personal communication, available upon request. Google Scholar 19 R. Campbell: Théorie générale de l'équation de Mathieu. Masson, Paris 1955. Google Scholar 20 N. W. McLachlan: Theory and application of Mathieu functions. Clarendon Press, Oxford 1951. Google Scholar 21 M. Abramowitz, I. A. Stegun: Handbook of mathematical functions. Dover, New York 1972, 723–745. Google Scholar 22 G. Gouesbet: Exact description of arbitrary shaped beams for use in light scattering theories. J. Opt. Soc. Am. A. 13 (1996) 2434–2440. 10.1364/JOSAA.13.002434 Web of Science®Google Scholar 23 L. W. Davis: Theory of electromagnetic beams. Phys. Rev. 19 (1979) 1177–1179. 10.1103/PhysRevA.19.1177 Web of Science®Google Scholar 24 J. P. Barton, D. R. Alexander: Fifth-order corrected electromagnetic field components for fundamental Gaussian beam. J. Appl. Phys. 66 (1989) 2800–2802. 10.1063/1.344207 Web of Science®Google Scholar 25 G. Gouesbet, J. A. Lock, G. Gréhan: Partial wave representations of laser beams for use in light scattering calculations. Appl. Opt. 34 (1995) 2133–2143. 10.1364/AO.34.002133 CASPubMedWeb of Science®Google Scholar 26 J. A. Lock, G. Gouesbet: Rigorous justification of the localized approximation to the beam shape coefficients in generalized Lorenz- Mie theory, I: on axis beams. J. Opt. Soc. Am. A. 11 (1994) 2503–2515. 10.1364/JOSAA.11.002503 Web of Science®Google Scholar 27 G. Gouesbet, J. A. Lock: Rigorous justification of the localized approximation to the beam shape coefficients in generalized Lorenz- Mie theory, II: off-axis beams. J. Opt. Soc. Am. A. 11 (1994) 2516–2525. 10.1364/JOSAA.11.002516 Web of Science®Google Scholar 28 G. Gouesbet: Higher-order descriptions of Gaussian beams. J. Opt. Paris 27 (1996) 35–50. 10.1088/0150-536X/27/1/006 Web of Science®Google Scholar 29 G. Gouesbet, L. Mees, G. Gréhan: Partial wave expansions of higher-order Gaussian beams in elliptical cylinder coordinates. J. Opt. in press. Google Scholar 30 G. Gouesbet, L. Mees, G. Gréhan, K. F. Ren: Description of arbitrary beams in elliptical cylinder coordinates, by using a plane wave spectrum approach. Opt. Commun., in press. Google Scholar 31 G. Gouesbet, C. Letellier, K. F. Ren, G. Gréhan: Discussion of two quadrature methods of evaluating beam shape coefficients in generalized Lorenz-Mie theory. Appl. Opt. 35 (1996) 1537–1542. 10.1364/AO.35.001537 CASPubMedWeb of Science®Google Scholar 32 K. F. Ren, G. Gréhan, G. Gouesbet: Localized approximation of generalized Lorenz-Mie theory. Faster algorithm for computations of the beam shape coefficients. Part. Part. Syst. Charact. 9 (1992) 144–150. 10.1002/ppsc.19920090119 Web of Science®Google Scholar 33 K. F. Ren, G. Gouesbet, G. Gréhan: The integral localized approximation in generalized Lorenz-Mie. Appl. Opt. 37 (1998) 4218–4225. 10.1364/AO.37.004218 CASPubMedWeb of Science®Google Scholar 34 J. A. Lock: Improved Gaussian beam scattering algorithm. Appl. Opt. 34 (1995) 559–570. 10.1364/AO.34.000559 CASPubMedWeb of Science®Google Scholar 35 G. Gouesbet, L. Mees, G. Gréhan, K. F. Ren: Localized approximation for Gaussian beams in elliptical cylinder coordinates. In preparation. Google Scholar 36 H. Polaert, G. Gréhan, G. Gouesbet: Improved standard beams with applications to reverse radiation pressure. Appl. Opt. 37 (1998) 2435–2440. 10.1364/AO.37.002435 CASPubMedWeb of Science®Google Scholar 37 G. Gouesbet, G. Gréhan: Interaction between shaped beams and an infinite cylinder, including a discussion of Gaussian beams. Part. Part. Syst. Charact. 11 (1994) 299–308. 10.1002/ppsc.19940110405 Web of Science®Google Scholar 38 G. Gouesbet, G. Gréhan: Interaction between a Gaussian beam and an infinite cylinder using non sigma-separable potentials. J. Opt. Soc. Am. A. 11 (1994) 3261–3273. 10.1364/JOSAA.11.003261 Web of Science®Google Scholar 39 G. Gouesbet: The separability theorem revisited with applications to light scattering theory. J. Opt. 26 (1995) 123–135. 10.1088/0150-536X/26/3/004 Web of Science®Google Scholar 40 E. Lenglart, G. Gouesbet: The separability "theorem" in terms of distributions with discussion of electromagnetic scattering theory. J. Math. Phys. 37 (1996) 4705–4710. 10.1063/1.531649 Web of Science®Google Scholar 41 G. Gouesbet: Interaction between Gaussian beams and infinite cylinders, by using the theory of distributions. J. Opt. 26 (1995) 225–239. 10.1088/0150-536X/26/5/005 Web of Science®Google Scholar 42 G. Gouesbet: Scattering of a first-order Gaussian beam by an infinite cylinder with arbitrary location and arbitrary orientation. Part. Part. Syst. Charact. 12 (1995) 242–256. 10.1002/ppsc.19950120507 Web of Science®Google Scholar 43 G. Gouesbet: Scattering of higher-order Gaussian beams by an infinite cylinder. J. Opt. (Paris) 28 (1997) 45–65. 10.1088/0150-536X/28/2/001 Web of Science®Google Scholar 44 G. Gouesbet: Interaction between an infinite cylinder and an arbitrary shaped beam. Appl. Opt. 36 (1997) 4292–4305. 10.1364/AO.36.004292 CASPubMedWeb of Science®Google Scholar 45 K. F. Ren, G. Gréhan, G. Gouesbet: Scattering of Gaussian beam by an infinite cylinder in the GLMT-framework, formulation and numerical results. J. Opt. Soc. Am. A. 4 (1997) 3014–3025. 10.1364/JOSAA.14.003014 Web of Science®Google Scholar 46 G. Gouesbet, G. Gréhan, K. F. Ren: Rigorous justification of the cylindrical localized approximation to speed up computations in GLMT for cylinders. J. Opt. Soc. Am. A. 15 (1998) 511–523. 10.1364/JOSAA.15.000511 Web of Science®Google Scholar 47 G. Gouesbet, K. F. Ren, L. Mees, G. Gréhan: The cylindrical localized approximation to speed up computations in GLMT for cylinders, for arbitrary location and orientation of the scatterer. Appl. Opt., to be published Google Scholar 48 L. Mees, K. F. Ren, G. Gréhan, G. Gouesbet: Scattering of Gaussian beam by an infinite cylinder with arbitrary location and arbitrary orientation, numerical results. J. Opt. Soc. Am. A. to be published Google Scholar 49 J. A. Lock: Scattering of a diagonally incident focused Gaussian beam by an infinitely long homogeneous circular cylinder. J. Opt. Soc. Am. A. 14 (1997) 640–652. 10.1364/JOSAA.14.000640 Web of Science®Google Scholar 50 J. A. Lock: Morphology dependent resonances of an infinitely long circular cylinder illuminated by a diagonally incident plane wave or a focused Gaussian beam. J. Opt. Soc. Am. A. 14 (1997) 653–661. 10.1364/JOSAA.14.000653 Web of Science®Google Scholar Citing Literature Volume16, Issue1May 1999Pages 3-10 ReferencesRelatedInformation

Referência(s)