Improvement of Natural Defense Responses
1996; Wiley; Volume: 792; Issue: 1 Linguagem: Inglês
10.1111/j.1749-6632.1996.tb32499.x
ISSN1749-6632
AutoresRichard A. Dixon, Chris Lamb, Nancy L. Paiva, Sameer A. Masoud,
Tópico(s)Insect-Plant Interactions and Control
ResumoAnnals of the New York Academy of SciencesVolume 792, Issue 1 p. 126-139 Improvement of Natural Defense Responses RICHARD A. DIXON, RICHARD A. DIXON Plant Biology Division Samuel Roberts Noble Foundation P.O. Box 2180 Ardmore, Oklahoma 73402Search for more papers by this authorCHRIS J. LAMB, CHRIS J. LAMB Salk Institute for Biological Studies 10010 North Torrey Pines Road La Jolla, California 92037Search for more papers by this authorNANCY L. PAIVA, NANCY L. PAIVA Plant Biology Division Samuel Roberts Noble Foundation P.O. Box 2180 Ardmore, Oklahoma 73402Search for more papers by this authorSAMEER MASOUD, SAMEER MASOUD Plant Biology Division Samuel Roberts Noble Foundation P.O. Box 2180 Ardmore, Oklahoma 73402Search for more papers by this author RICHARD A. DIXON, RICHARD A. DIXON Plant Biology Division Samuel Roberts Noble Foundation P.O. Box 2180 Ardmore, Oklahoma 73402Search for more papers by this authorCHRIS J. LAMB, CHRIS J. LAMB Salk Institute for Biological Studies 10010 North Torrey Pines Road La Jolla, California 92037Search for more papers by this authorNANCY L. PAIVA, NANCY L. PAIVA Plant Biology Division Samuel Roberts Noble Foundation P.O. Box 2180 Ardmore, Oklahoma 73402Search for more papers by this authorSAMEER MASOUD, SAMEER MASOUD Plant Biology Division Samuel Roberts Noble Foundation P.O. Box 2180 Ardmore, Oklahoma 73402Search for more papers by this author First published: May 1996 https://doi.org/10.1111/j.1749-6632.1996.tb32499.xCitations: 6AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat References 1 Dangl, J. L. 1995. Piéce de résistance: Novel classes of plant disease resistance genes. Cell 80: 363–366. 2 Levine, A., R. Tenhaken, R. A. Dixon & C. J. Lamb. 1994. H2 O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response as a local trigger of programmed cell death and a diffusible inducer of cellular protectant genes. Cell 79: 583–593. 3 Delaney, T. P., S. Uknes, B. Vernoou, L. Friedrich, K. Weymann, D. Negrotto, T. Gaffney, M. Gut-Rella, H. Kessmann, E. Ward & J. Ryals. 1994. A central role of salicylic acid in plant disease resistance. Science 266: 1247–1250. 4 Ryals, J., K. A. Lawton, T. P. Delaney, L. Friedrich, H. Kessmann, U. Neuenschwander, S. Uknes, B. Vernoou & K. Weymann. 1995. Signal transduction in systemic acquired resistance. Proc. Natl. Acad. Sci. USA 92: 4202–4205. 5 Dietrich, R. A., T. P. Delaney, S. J. Uknes, E. R. Ward, J. A. Ryals & J. L. Dangl. 1994. Arabidopsis mutants simulating disease resistance response. Cell 77: 565–577. 6 Cameron, R. K., R. A. Dixon & C. J. Lamb. 1994. Biologically induced systemic acquired resistance in Arabidopsis thaliana. Plant J. 5: 715–725. 7 Maher, E. A., N. J. Bate, W. Ni, Y. Elkind, R. A. Dixon & C. J. Lamb. 1994. Increased disease susceptibility of transgenic tobacco plants with suppressed levels of preformed phenylpropanoid products. Proc. Natl. Acad. Sci. USA 91: 7802–7806. 8 Gaffney, T., L. Friedrich, B. Vernooij, D. Negrotto, G. Nye, S. Uknes, E. Ward, H. Kessmann & J. Ryals. 1993. Requirement of salicylic acid from the induction of systemic acquired resistance. Science 261: 754–756. 9 Dixon, R. A., M. K. Battacharyya & N. L. Paiva. 1994. Engineering disease resistance in plants: An overview. In Advanced Methods in Plant Pathology. R. P. Singh & U. S. Singh, Eds.: 249–270. CRC Press. Boca Raton , FL . 10 Lamb, C. J., J. A. Ryals, E. R. Ward & R. A. Dixon. 1992. Emerging strategies for enhancing crop resistance to microbial pathogens. Bio/Technology 10: 1436–1445. 11 Dixon, R. A. & N. L. Paiva. 1993. Prospects for the genetic manipulation of antimicrobial plant secondary products. In Opportunities for Molecular Biology in Crop Production. D. J. Beadle, D. H. L. Bishop, L. G. Copping, G. K. Dixon & D. W. Holloman, Eds.: 113–118. British Crop Protection Council. Farnham . 12 Dixon, R. A., C. A. Maxwell, W. Ni, A. Oommen & N. L. Paiva. 1993. Genetic manipulation of lignin and phenylpropanoid compounds involved in interactions with microorganisms. Rec. Adv. Phytochem. 28: 153–178. 13 Cornelissen, B. J. C. & L. S. Melchers. 1993. Strategies for control of fungal diseases with transgenic plants. Plant Physiol. 101: 709–712. 14 Grayer, R. J. & J. B. Harborne. 1994. A survey of antifungal compounds from higher plants. Phytochemistry 37: 19–42. 15 Vanetten, H., J. W. Mansfield, J. A. Bailey & E. E. Farmer. 1994. Two classes of plant antibiotics: Phytoalexins versus “phytoanticipins. Plant Cell 6: 1191–1192. 16 Leah, R., H. Tommerup, I. Svendsen & J. Mundy. 1991. Biochemical and molecular characterization of three barley seed proteins with antifungal properties. J. Biol. Chem. 266: 1564–1573. 17 Lotan, T., N. Ori & R. Fluhr. 1989. Pathogenesis-related proteins are developmentally regulated in tobacco flowers. Plant Cell 1: 881–887. 18 Bowyer, P., B. R. Clarke, P. Lunness, M. J. Daniels & A. E. Osbourn. 1995. Host range of a plant pathogenic fungus determined by a saponin detoxifying enzyme. Science 267: 371–374. 19 Elkind, Y., R. Edwards, M. Mavandad, S. A. Hedrick, O. Ribak, R. A. Dixon & C. J. Lamb. 1990. Abnormal plant development and downregulation of phenylpropanoid biosynthesis in transgenic tobacco containing a heterologous phenylalanine ammonia-lyase gene. Proc. Natl. Acad. Sci. USA 87: 9057–9061. 20 Bate, N. J., J. Orr, W. Ni, A. Meroni, T. Nadler-Hassar, P. W. Doerner, R. A. Dixon, C. J. Lamb & Y. Elkind. 1994. Quantitative relationship between phenylalanine ammonia-lyase levels and phenylpropanoid accumulation in transgenic tobacco identifies a rate determining step in natural product synthesis. Proc. Natl. Acad. Sci. USA 91: 7608–7612. 21 Ahl-Goy, P., H. Singer, R. Reist, R. Aichholz, W. Blum, E. Schmidt & H. Kessmann. 1993. Accumulation of scopoletin is associated with the high disease resistance of the hybrid Nicotiana glutinosa X Nicotiana debneyi. Planta 191: 200–206. 22 Vanetten, H. D., D. E. Matthews & P. S. Matthews. 1989. Phytoalexin detoxification: Importance for pathogenicity and practical implications. Annu. Rev. Phytopathol. 27: 143–164. 23 Miao, V. P., S. F. Covert & H. D. Vanetten. 1991. A fungal gene for antibiotic resistance on a dispensable (“B”) chromosome. Science 254: 1773–1776. 24 Glazebrook, J. & F. M. Ausubel. 1994. Isolation of phytoalexin-deficient mutants of Arahidopsis thaliana and characterization of their interactions with bacterial pathogens. Proc. Natl. Acad. Sci. USA 91: 8955–8959. 25 Hain, R., H.-J. Reif, E. Krause, R. Langebartels, H. Kindl, B. Vornam, W. Wiese, E. Schmelzer, P. H. Schrier, R. H. Stöcker & K. Stenzel. 1993. Disease resistance results from foreign phytoalexin expression in a novel plant. Nature 361: 153–156. 26 Paiva, N. L., R. Edwards, Y. Sun, G. Hrazdina & R. A. Dixon. 1991. Stress responses in alfalfa (Medicago sativa L.) XI. Molecular cloning and expression of alfalfa isoflavone reductase, a key enzyme of isoflavonoid phytoalexin biosynthesis. Plant Mol.-Biol. 17: 653–667. 27 Paiva, N. L., Y. Sun, R. A. Dixon, H. D. Vanetten & G. Hrazdina. 1994. Molecular cloning of isoflavone reductase from pea (Pisum sativum L.): Evidence for a 3R-isoflavanone intermediate in (+)-pisatin biosynthesis. Arch. Biochem. Biophys. 312: 501–510. 28 Guo, L., R. A. Dixon & N. L. Paiva. 1994. Conversion of vestitone to medicarpin in alfalfa (Medicago sativa L.) is catalyzed by two independent enzymes. Identification, purification, and characterization of vestitone reductase and 7,2'-dihydroxy-4'-methoxyisoflavanol dehydratase. J. Biol. Chem. 269: 22372–22378. 29 Guo, L. & N. L. Paiva. 1995. Molecular cloning and expression of alfalfa (Medicago sativa L.) vestitone reductase, the penultimate enzyme in medicarpin biosynthesis. Arch. Biochem. Biophys. 320: 353–360. 30 Mau, C. J. D. & C. A. West. 1994. Cloning of casbene synthase cDNA: Evidence for conserved structural features among terpenoid cyclases in plants. Proc. Natl. Acad. Sci. USA 91: 8497–8501. 31 Chappell, J. 1995. The biochemistry and molecular biology of isoprenoid metabolism. Plant Physiol. 107: 1–6. 32 Blount, J. W., R. A. Dixon & N. L. Paiva. 1993. Stress responses in alfalfa (Medicago sativa L.) XVI. Antifungal activity of medicarpin and its biosynthetic precursors; implications for the genetic manipulation of stress metabolites. Physiol. Mol. Plant Pathol. 41: 333–349. 33 Biggs, D. R., R. Welle, F. R. Visser & H. Grisebach. 1987. Dimethylallylpyrophosphate: 3,9-dihydroxypterocarpan 10-dimethylallyl transferase from Phaseolus vulgaris. FEBS Lett. 220: 223–226. 34 Delserone, L. M., D. E. Matthews & H. D. Vanetten. 1992. Differential toxicity of enantiomers of maackiain and pisatin to phytopathogenic fungi. Phytochemistry 31: 3813–3819. 35 Lindberg, R. L. P. & M. Negishi. 1989. Alteration of mouse cytochrome P450coh substrate specificity by mutation of a single amino-acid residue. Nature 339: 632–634. 36 Shorrosh, B. S., R. A. Dixon & J. B. Ohlrogge. 1994. Molecular cloning, characterization and elicication of acetyl CoA carboxylase from alfalfa. Proc. Natl. Acad. Sci. USA 91: 4323–4327. 37 Oommen, A., R. A. Dixon & N. L. Paiva. 1994. The elicitor-inducible alfalfa isoflavone reductase promoter confers different patterns of developmental expression in homologous and heterologous transgenic plants. Plant Cell 6: 1789–1803. 38 Hrazdina, G. & G. J. Wagner. 1985. Metabolic pathways as enzyme complexes: Evidence for the synthesis of phenylpropanoids and flavonoids on membrane associated enzyme complexes. Arch. Biochem. Biophys. 237: 88–100. 39 Heitz, T., B. Fritig & M. Legrand. 1994. Local and systemic accumulation of pathogenesis-related proteins in tobacco plants infected with tobacco mosaic virus. Mol. Plant-Microbe Int. 7: 776–779. 40 Mauch, F. & A. Staehelin. 1989. Functional implications of the subcellular localization of ethylene-induced chitinase and β-1,3-glucanase in bean leaves. Plant Cell 1: 447–457. 41 Kombrink, E., M. Schröder & K. Hahlbrock. 1988. Several “pathogenesisrelated” proteins in potato are 1,3-β-glucanases and chitinases. Proc. Natl. Acad. Sci. USA 85: 782–786. 42 Schlumbaum, A., F. Mauch, U. Vögeli & T. Boller. 1986. Plant chitinases are potent inhibitors of fungal growth. Nature 324: 365–368. 43 Mauch, F., B. Mauch-Mani & T. Boller. 1988. Antifungal hydrolases in pea tissue. II. Inhibition of fungal growth by combinations of chitinase and β-1,3-glucanase. Plant Physiol. 88: 936–942. 44 Niderman, T., I. Genetet, T. B. Ruyere R. Gees, A. Stintzi, M. Legrand, B. Fritig & E. Mosinger. 1995. Pathogenesis-related PR-1 proteins are antifungal. Isolation and characterization of three 14-kilodalton proteins of tomato and of a basic PR-1 of tobacco with inhibitory activity against Phytophthora infestans. Plant Physiol. 108: 17–27. 45 Vigers, A. J., S. Wiedemann, W. K. Roberts, M. Legrand, C. P. Selitrennikoff & B. Fritig. 1992. Thaumatin-like pathogenesis-related proteins are antifungal. Plant Sci. 83: 155–161. 46 Alexander, D., R. M. Goodman, M. Gut-Rella, C. Glascock, K. Weymann, L. Friedrich, D. Maddox, P. Ahl-Goy, T. Lintz, E. Ward & J. Ryals. 1993. Increased tolerance to two oomycete pathogens in transgenic tobacco expressing pathogenesis-related protein la. Proc. Natl. Acad. Sci. USA 90: 7327–7331. 47 Samac, D. A. & D. M. Shah. 1994. Effect of chitinase antisense RNA expression on disease susceptibility of Arabidopsis plants. Plant Mol. Biol. 25: 587–596. 48 Neuhaus, J. M., S. Flores, D. Keefe, P. Ahl-Goy & F. J. Meins. 1992. The function of vacuolar β-1,3-glucanase investigated by antisense transformation. Susceptibility of transgenic Nicotiana sylvestris plants to Cercospora nicotianae infection. Plant Mol. Biol. 19: 803–813. 49 Beffa, R. S., J. M. Neuhaus & F. J. Meins. 1993. Physiological compensation in antisense transformants: Specific induction of an “ersatz” glucan endo-1,3-β-glucosidase in plants infected with necrotizing viruses. Proc. Natl. Acad. Sci. USA 90: 8792–8796. 50 Keen, N. T. & M. Yoshikawa. 1983. β-1,3-endoglucanase from soybean releases elicitor-active carbohydrates from fungus cell walls. Plant Physiol. 71: 460–465. 51 Neuhaus, J. M., P. Ahl-Goy, U. Hinz, S. Flores & F. J. Meins. 1991. High-level expression of a tobacco chitinase gene in Nicotiana sylvestris. Susceptibility of transgenic plants to Cercospora nicotianae infection. Plant Mol. Biol. 16: 141–151. 52 Constabel, C. P., C. Bertrand & N. Brisson. 1993. Transgenic potato plants overexpressing the pathogenesis-related STH-2 gene show unaltered susceptibility to Phytophthora infestans and potato virus X. Plant Mol. Biol. 22: 775–782. 53 Zhu, Q., E. A. Maher, S. Masoud, R. A. Dixon & C. J. Lamb. 1994. Enhanced protection against fungal attack by constitutive co-expression of chitinase and glucanase genes in transgenic tobacco. Bio/Technology 12: 807–812. 54 Broglie, K., I. Chet, M. Holliday, R. Cressman, P. Biddle, S. Knowlton, C. J. Mauvais & R. Broglie. 1991. Transgenic plants with enhanced resistance to the fungal pathogen Rhizoctonia solani. Science 254: 1194–1197. 55 Broglie, R. & K. Broglie. 1993. Chitinases and plant protection. In Mechanisms of Plant Defense Responses. B. Fritig & M. Legrand, Eds.: 411–421. Kluwer. Dordrecht . 56 Benhamou, N., K. Broglie, I. Chet & R. Broglie. 1993. Cytology of infection of 35S-bean chitinase transgenic canola plants by Rhizoctonia solani: Cytochemical aspects of chitin breakdown in vivo. Plant J. 4: 295–305. 57 Yoshikawa, M., M. Tsuda & Y. Takeuchi. 1993. Resistance to fungal diseases in transgenic tobacco plants expressing the phytoalexin elicitor-releasing factor, β-1,3-endoglucanase, from soybean. Naturwissenschaften 80: 417–420. 58 Maher, E. A., C. J. Lamb & R. A. Dixon. 1993. Stress responses in alfalfa (Medicago sativa L.) XVII. Identification of multiple hydrolases and molecular characterization of an acidic glucanase. Physiol. Mol. Plant Pathol. 43: 329–342. 59 Zhu, Q. & C. J. Lamb. 1991. Isolation and characterization of a rice gene encoding a basic chitinase. Mol. Gen. Genet. 226: 289–296. 60 Zhu, Q., P. Doerner & C. J. Lamb. 1993. Stress induction and developmental regulation of a rice chitinase promoter in transgenic tobacco. Plant J. 3: 203–212. 61 Guido, J., B. Görnhardt, J. Mundy, J. Longemann, E. Pinsdorf, R. Leah, J. Schell & C. Mass. 1995. Enhanced quantitative resistance against fungal disease by combinatorial expression of different barley antifungal proteins in transgenic tobacco. Plant J. 8: 97–108. 62 De Carvalho, F., G. Gheysen, S. Kushnir, M. Van Montagu, D. Inzé & C. Castresana. 1992. Suppression of β-1,3-glucanase transgene expression in homozygous plants. EMBO J. 11: 2595–2602. 63 Hart, C. M., B. Fischer, J. M. Neuhaus & F. J. Meins. 1992. Regulated inactivation of homologous gene expression in transgenic Nicotiana sylvestris plants containing a defense-related tobacco chitinase gene. Mol. Gen. Genet. 235: 179–188. 64 Howie, W., L. Joe, E. Newbigin, T. Suslow & P. Dunsmuir. 1994. Transgenic tobacco plants which express the chiA gene from Serratia marcescens have enhanced tolerance to Rhizoctonia solani. Transgenic Res. 3: 90–98. 65 Roberts, W. K. & C. P. Selitrennikoff. 1988. Plant and bacterial chitinases differ in antifungal activity. J. Gen. Microbiol. 134: 169–176. 66 Lerouge, P., P. Roche, C. Faucher, F. Maillet, G. Truchet, J. C. Promé & J. Dénarié. 1990. Symbiotic host-specificity of Rhizobium meliloti is determined by a sulphated and acylated glucosamine oligosaccharide signal. Nature 344: 781–784. 67 Vierheilig, H., M. Alt, J. M. Neuhaus, T. Boller & A. Wiemken. 1993. Colonization of transgenic Nicotiana sylvestris plants, expressing different forms of Nicotiana tabacum chitinase, by the root pathogen Rhizoctonia solani and by the mycorrhizal symbiont Glomus mosseae. Mol. Plant-Microbe Interact. 6: 261–264. 68 Varner, J. E. & L.-S. Lin. 1989. Plant cell wall architecture. Cell 56: 231–239. 69 Wycoff, K. L., R. A. Dixon & C. J. Lamb. 1992. Hydroxyproline-rich glycoproteins in plant-microbe interactions and development. In Molecular Signals in Plant-Microbe Communication. D. P. S. Verma, Ed.: 407–422. CRC Press. Boca Raton . 70 Kieliszewski, M. & D. T. A. Lamport. 1994. Extensin: Repetitive motifs, functional sites, post-translational codes, and phylogeny. Plant J. 5: 157–172. 71 Wycoff, K. L., P. A. Powell, R. A. Gonzales, D. R. Corbin, C. J. Lamb & R. A. Dixon. 1994. Wound and infection activation of the promoter of a bean hydroxyproline-rich glycoprotein gene superimposed on a pattern of tissue-specific developmental expression. Plant Physiol. 109: 41–52. 72 Hammerschmidt, R., D. T. A. Lamport & E. P. Muldoon. 1984. Cell wall hydroxyproline enhancement and lignin deposition as an early event in the resistance of cucumber to Cladosporium cucumerinum. Physiol. Plant Pathol. 24: 43–47. 73 Bradley, D. J., P. Kjellbom & C. J. Lamb. 1992. Elicitor- and wound-induced oxidative cross-linking of a proline-rich plant cell wall protein: A novel, rapid defense response. Cell 70: 21–30. 74 Whetten, R. & R. Sederoff. 1995. Lignin biosynthesis. Plant Cell 7: 1001–1013. 75 Davin, L. B. & N. G. Lewis. 1992. Phenylpropanoid metabolism: Biosynthesis of monolignols, lignans and neolignans, lignins and suberins. Rec. Adv. Phytochem. 26: 325–375. 76 Beardmore, J., J. P. Ride & J. W. Granger. 1983. Cellular lignification as a factor in the hypersensitive resistance of wheat to stem rust. Physiol. Plant Pathol. 22: 209–220. 77 Maule, A. J. & J. P. Ride. 1976. Ammonia-lyase and O-methyltransferase activities related to lignification in wheat leaves infected with Botrytis. Phytochemistry 15: 1661–1664. 78 Vance, C. P., T. K. Kirk & R. T. Sherwood. 1980. Lignification as a mechanism of disease resistance. Annu. Rev. Phytopathol. 18: 259–288. 79 Hammerschmidt, R. 1984. Rapid deposition of lignin in potato tuber tissue as a response to fungi non-pathogenic on potato. Physiol. Plant Pathol. 24: 33–42. 80 Lewis, N. G. & E. Yamamoto. 1990. Lignin: Occurrence, biogenesis and biodegradation. Annu. Rev. Plant Physiol. Plant Mol. Biol. 41: 455–496. 81 Moerschbacher, B. M., U. Noll, L. Gorrichon & H. J. Reisener. 1990. Specific inhibition of lignification breaks hypersensitive resistance of wheat to stem rust. Plant Physiol. 93: 465–470. 82 Massala, R., M. Legrand & B. Fritig. 1987. Comparative effects of two competitive inhibitors of phenylalanine ammonia-lyase on the hypersensitive resistance of tobacco to tobacco mosaic virus. Plant Physiol. Biochem. 25: 217–225. 83 Dwivedi, U. N., W. H. Campbell, J. Yu, R. S. S. Datla, R. C. Bugos, V. L. Chiang & G. Podila. 1994. Modification of lignin biosynthesis in transgenic Nicotiana through expression of an antisense O-methyltransferase gene from Populus. Plant Mol. Biol. 26: 61–71. 84 Ni, W., N. L. Paiva & R. A. Dixon. 1994. Reduced lignin in transgenic plants containing an engineered caffeic acid O-methyltransferase antisense gene. Transgenic Res. 3: 120–126. 85 Halpin, C., M. E. Knight, G. A. Foxon, M. M. Campbell, A. M. Boudet, J. A. Boon, B. Chabbert, M.-T. Tollier & W. Shuch. 1994. Manipulation of lignin quality by down-regulation of cinnamyl alcohol dehydrogenase. Plant J. 6: 339–350. Citing Literature Volume792, Issue1Engineering Plants for Commercial Products and ApplicationsMay 1996Pages 126-139 ReferencesRelatedInformation
Referência(s)