Artigo Acesso aberto

Accumulation of Ca2+ induced by cytotoxic levels of menadione in the isolated, perfused rat liver

1985; Wiley; Volume: 149; Issue: 1 Linguagem: Inglês

10.1111/j.1432-1033.1985.tb08912.x

ISSN

1432-1033

Autores

Harihara M. Mehendale, Sten-Åke Svensson, C. Baldi, Sten Orrenius,

Tópico(s)

Trace Elements in Health

Resumo

Previous studies have indicated that the presence of cytotoxic levels of menadione (2-methyl-1,4-naphthoquinone) causes rapid changes in intracellular thiol and Ca2+ homeostasis in isolated rat hepatocytes. The present investigation was undertaken to examine these effects in the intact liver. Rat livers were therefore perfused with Krebs-Henseleit buffer containing 1.3 mM Ca2+ using a single-pass mode, and the perfusate Ca2+ level was monitored with an on-line Ca2+-selective electrode. Infusion of menadione elicited an increased O2 uptake by the liver, followed by a dose-dependent decrease in the perfusate level of Ca2+. Hepatic accumulation of Ca2+ was accompanied by stimulation of cytosolic phosphorylase a activity. Cessation of menadione infusion resulted in gradual recovery of perfusate Ca2+ to base levels. Ca2+ uptake was not accompanied by decreases in reduced pyridine nucleotide or ATP levels in the liver as evidenced by measurements either during maximal Ca2+ uptake or after recovery. However, Ca2+ uptake was correlated with decreased glutathione and increased glutathione disulfide levels in the liver, both of which reversed during recovery from Ca2+ uptake. Moreover, depletion of hepatic glutathione by pretreatment with diethylmaleate resulted in increased Ca2+ uptake during menadione infusion. The amount of protein-bound mixed disulfides showed a particularly striking relationship to Ca2+ uptake, reaching a maximal level during Ca2+ uptake and reversing toward normal value during recovery from Ca2+ accumulation. The present findings suggest that menadione-induced Ca2+ uptake is due to plasma membrane dysfunction as a result of loss of protein thiol groups critical for maintaining the plasma membrane Ca2+ extrusion mechanism. Our model offers a particularly useful opportunity to study mechanisms underlying toxic disturbances in Ca2+ homeostasis in the intact liver, since Ca2+ fluxes can be monitored under conditions in which cellular control mechanisms are not obliterated by excessive toxicity.

Referência(s)