Artigo Acesso aberto Revisado por pares

On the embedded primary components of ideals. IV

1995; American Mathematical Society; Volume: 347; Issue: 2 Linguagem: Inglês

10.1090/s0002-9947-1995-1249882-7

ISSN

1088-6850

Autores

William Heinzer, Louis J. Ratliff, Kishor Shah,

Tópico(s)

Rings, Modules, and Algebras

Resumo

The results in this paper expand the fundamental decomposition theory of ideals pioneered by Emmy Noether. Specifically, let I I be an ideal in a local ring ( R , M ) (R,M) that has M M as an embedded prime divisor, and for a prime divisor P P of I I let I C P ( I ) I{C_P}(I) be the set of irreducible components q q of I I that are P P -primary (so there exists a decomposition of I I as an irredundant finite intersection of irreducible ideals that has q q as a factor). Then the main results show: (a) I C M ( I ) = ∪ { I C M ( Q ) ; Q is a MEC ⁡ of I } I{C_M}(I) = \cup \{ I{C_M}(Q);Q\;{\text {is a }}\operatorname {MEC} {\text { of }}I\} ( Q Q is a MEC of I I in case Q Q is maximal in the set of M M -primary components of I I ); (b) if I = ∩ { q i ; i = 1 , … , n } I = \cap \{ {q_i};i = 1, \ldots ,n\} is an irredundant irreducible decomposition of I I such that q i {q_i} is M M -primary if and only if i = 1 , … , k > n i = 1, \ldots ,k > n , then ∩ { q i ; i = 1 , … , k } \cap \{ {q_i};i = 1, \ldots ,k\} is an irredundant irreducible decomposition of a MEC of I I , and, conversely, if Q Q is a MEC of I I and if ∩ { Q j ; j = 1 , … , m } \cap \{ {Q_j};j = 1, \ldots ,m\} (resp., ∩ { q i ; i = 1 , … , n } \cap \{ {q_i};i = 1, \ldots ,n\} ) is an irredundant irreducible decomposition of Q Q (resp., I I ) such that q 1 , … , q k {q_1}, \ldots ,{q_k} are the M M -primary ideals in { q 1 , … , q n } \{ {q_1}, \ldots ,{q_n}\} , then m = k m = k and ( ∩ { q i ; i = k + 1 , … , n } ) ∩ ( ∩ { Q j ; j = 1 , … , m } ) ( \cap \{ {q_i};i = k + 1, \ldots ,n\} ) \cap ( \cap \{ {Q_j};j = 1, \ldots ,m\} ) is an irredundant irreducible decomposition of I I ; (c) I C M ( I ) = { q , q is maximal in the set of ideals that contain I and do not contain I : M } I{C_M}(I) = \{ q,q\;{\text {is maximal in the set of ideals that contain }}I\;{\text {and do not contain }}I:M\} ; (d) if Q Q is a MEC of I I , then I C M ( Q ) = { q ; Q ⊆ q ∈ I C M ( I ) } I{C_M}(Q) = \{ q;Q \subseteq q \in I{C_M}(I)\} ; (e) if J J is an ideal that lies between I I and an ideal Q ∈ I C M ( I ) Q \in I{C_M}(I) , then J = ∩ { q ; J ⊆ q ∈ I C M ( I ) } J = \cap \{ q;J \subseteq q \in I{C_M}(I)\} ; and, (f) there are no containment relations among the ideals in ∪ { I C P ( I ) \cup \{ I{C_P}(I) ; P P is a prime divisor of I I }.

Referência(s)